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Overall, the goal of this talk is to say something about what

J. Faergeman and | did in our joint work from last year. Actually,
the ingredient | want to discuss was proved in a stronger form by
Nadler-Taylor shortly after our paper appeared, and | will
emphasize their result. Then | will try to say why Faergeman and |
wanted this result. (Briefly: it was an ingredient in the main
technical breakthrough before recent progress leading to the proof
of the geometric Langlands conjecture.)

| will try to say things in QFT language today. But it is not my
native tongue, and | am sorry for mistakes, misrepresentations,
omissions, ignorance, etc.

Last warning: the result looks kind of trivial in what I'll explain.
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| want to begin with a general background on objects from the
geometric Langlands program that | wish to discuss.

First, the subject is about categories, which maybe should be
explained. For our purposes, you can think of categories as 2d
TQFTs. More precisely, we have:

{2d TQFTs} < {categories}

where the map sends a TQFT Z to its category of boundary
conditions. If you slightly weaken the left hand side, you can make
the above into an equality.
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The main object of study today is the category D-mod(Bung) for
G a complex reductive Lie group. From the physics point of view,
Kapustin-Witten explained that it arises as follows.

First, there is 4d N = 4 Yang-Mills theory YM¢ for the compact
form of G. After Kapustin-Witten, this theory has a 1-dimensional
family of topological twists indexed by a parameter V. For ¥ = 0,
we speak of the A-twist and denote the twisted theory by YMg 4.
(resp. ¥ = o0, B-twist, YM¢ ).
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Now if we fix a compact Riemann surface X, we can compactify
the theory YM¢ 4 on X, i.e., form the 2d TQFT YMg a(X x —),
which has category of boundary conditions D-mod(Bung). Here
Bung is the space of holomorphic G-bundles on X.

Officially, objects F of D-mod(Y) are (coordinate-free) expressions
of systems of linear, algebraic differential equations on Y. E.g., the
equation y’ — y = 0 defines a D-module exp on Al(= C).

For F a D-module, the symbols of the differential operators
occurring in its construction define a closed conical subset
SingSupp(F) < T*Y. It is always coisotropic, and in the best
situations, it is Lagrangian. So:

D-modules ~~» symplectic geometry on T*Y
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Less officially, D-mod(Y) ~ Fuk(T*Y). So | encourage you to
picture D-modules as branes: Lagrangians A in T*Y (equipped
with extra structure, most notably, a local system on AS™o°th) with
morphisms having something to do with intersections of
Lagrangians. In the best cases, the Lagrangian is conical and can
be pictured as the singular support.
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We constructed D-mod(Bung) by compactification from 4d, so
forgot information. One sign of its 4d origins is the existence of
Hecke operators, which are indexed by pairs x € X and a line
operator in YM¢(S2) at x. These line operators are indexed by
representations of the Langlands dual group G, so a point x € X
defines the Hecke action of Rep(G) on D-mod(Bung). In GL, we
try to understand D-mod(Bung) with its Hecke symmetries.
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There is a key boundary condition of YMg, the (principal) Nahm
pole/ Whittaker boundary condition.

For our purposes, a boundary condition defines dual maps:
Vect — D-mod(Bung) and D-mod(Bung) — Vect.

The former corresponds to an object W, € D-mod(Bung) (the
Whittaker/Poincaré sheaf) and the latter is denoted
coeff : D-mod(Bung) — Vect.
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These dual objects play a key normalizing role in GLC. In terms of
S-duality YMg ~ YM¢ (or YMg 4 ~ YMGB), the Nahm pole
boundary condition is dual to the Neumann boundary condition
(see [Gaiotto-Witten]).

Mathematically, this means the following. For example, if o an
irreducible G-local system, GLC predicts there exists a unique
Hecke eigensheaf F, € D-mod(Bung) with eigenvalue o and
subject to the normalization coeff(F,) ~ C.

More generally, for any o, there should be a unique tempered
eigensheaf F, subject to the same normalization.

The technical problem we solved: why are there no (tempered)
eigensheaves with coeff(F,) = 07 In other words, why is
D-mod(Bung) not “too big" for the GLC to hold?
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Let us describe the basic aspects of geometry of T* Bung.

First, a standard analysis shows that:
T*Bung = Higgsg = {Ps € Bung, ¢ € Ad(Pg).}

There is a characteristic polynomial map from T* Bung = Higgsg
to the Hitchin base Hitchg = [, (X, Q%d") where i runs over the
exponents of G.

For example, if G = SL,, we have € of rank 2, ¢: &€ — & ® 0L,
and the Hitchin map assigns the 2-form
det(¢) : N2€ — N2E @ Q% = N2 ® Q52
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By definition, the global nilpotent cone Nilp € T* Bung is the
preimage of 0 € Hitchg under the Hitchin map. This is a favorite
conical Lagrangian in T* Bung.

In joint work with Arinkin, Gaitsgory, Kazhdan, Rozenblyum, and
Varshavsky, we showed important relations between the Hecke
action and Nilp. Namely: (i) suitably understood, every Hecke
eigensheaf has singular support in Nilp, i.e., lies in
D-modniip(Bung), (ii) objects of D-modniip(Bung) have
topological counterparts (they are regular holonomic), so
D-modniip(Bung) >~ Shvpip(Bung), and (iii) in some sense, we
can recover all of D-mod(Bung) from the Hecke action by
knowing Shvy;i,(Bung).

Summary: for practical purposes, we can essentially think of typical
objects of D-mod(Bung) as branes supported on Nilp.
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The Hitchin map has a canonical section, called the global Kostant
slice or the Hitchin section. It is defined using Kostant's normal
form for an element of g with prescribed characteristic polynomial.

For example, for G = SLy, our section sends w € F(Q<§2) to
®3 ®—3 0 w
P =0 ®Qy 2and<b=<1 0).

In general, there is a space Bun%}, a j-twisted form of Buny, with
amapy: Bung\z, — A, and the Hitchin section consists of:

Kostg := {Py € Bunjy, ¢ € T5_Bung | qﬁ\ﬂ;N Bun2 = dU(Pn)}.

Points of Kostg are also called classical opers or oper Higgs
bundles.

The Hitchin section is Lagrangian in T* Bung.
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Geometry of T* Bung: the Kostant-Hitchin section

Officially, the Whittaker sheaf W, and its dual coeff are defined
using push-pull along Al = C « Buns,\), — Bung, starting with

exp € D-mod(Al), i.e., the same data as defined the Kostant slice.
You can convince yourself that the Hitchin section is the
Lagrangian brane supporting W,. Note that this is a non-conical
Lagrangian, which formally complicates things.



A picture

We have the following basic, completely tautological picture:



A picture

We have the following basic, completely tautological picture:

Nilp




A picture

We have the following basic, completely tautological picture:

Nilp

Kost¢




A picture

We have the following basic, completely tautological picture:

Nilp

Kost¢

This picture suggests that we should expect Whittaker coefficients
of D-modules/sheaves with nilpotent singular support to behave
especially nicely.
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The Nadler-Taylor theorem
We have:
Theorem (Nadler-Taylor)

For F € Shvy;ip(Bung), coeff(F) is the microstalk of F at the
intersection point Nilp n Kostg. In other words, if we convert F to
a local system ju(F) on Nilp™°°™  coeff(F) is its fiber at the point
Nilp N Kostg < Nilpsmooth,

Corollary

For J € Shvnjip(Bung), coeff(F) # 0 if and only if the point
Nilp N Kostg is in SingSupp(F). Also... this functor is exact,
commutes with Verdier duality, yields the characteristic cycle at
this point.

Fargeman and | obtained this corollary using some hard results in
geometric Langlands. Nadler-Taylor gave a geometric mechanism
and obtained the full theorem above, which we only conjectured.
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Our application

Recall the goal: given a non-zero eigensheaf F, with o an
irreducible G-local system, show that coeff(F,) # 0. We do this as
follows:

1. By AGKRRYV, SingSupp(F,) < Nilp.

2. SingSupp(F,) cannot lie only in Nilp'™& < Nilp. This is a
general theorem about tempered objects of Shvy;,(Bung)
(again: temperedness is automatic for o irreducible). (We
prove this using some geometric representation theory
techniques, some of which are a little subtle.)

3. Therefore, there exists a point ¢ € SingSupp(F,) which is a
nilpotent Higgs field that is regular nilpotent at the generic
point of X. There is a divisor D = ZX;X; with each 5\; a
dominant coweight — i.e., corresponding to an irreducible
representation of G! — which measures the failure of ¢ to be
regular nilpotent at every point of X.
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Our application

4. Applying the Hecke functor corresponding to D (and using
the eigensheaf property), we see that there exists a point
¢’ € SingSupp(F) with ¢’ being regular nilpotent. (This is
proved with some properties of singular support and some
quite simple geometry of Lie groups.) The set of such Higgs
fields is smooth, connected, and Lagrangian, so every such
point lies in SingSupp(F).

5. Therefore, Nilp N Kostg lies in SingSupp(F). Now the
corollary to Nadler-Taylor implies that coeff(F) # 0, so we
win.
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Another application

Suppose G is simply-connected for convenience, so Bung is
connected. For o irreducible and Schurian — its centralizer in G
should be trivial — we show that any normalized eigensheaf is an
irreducible perverse sheaf. Essentially, we can detect its
subquotients using coeff and Hecke functors, and there is no room
for anything non-trivial to appear.

In particular, this applies to the eigensheaves constructed by
Beilinson-Drinfeld via quantization of Hitchin's fibration.



Thanks!



