### Hypergeometric integrals, hook formulas, and Whittaker vectors

Giovanni Felder, ETH Zurich

Hamburg, 10 November 2023

based on joint work with Andrey Smirnov, Vitaly Tarasov and Alexander Varchenko

#### Outline

1 Variations on the hook length formula

2 Equivariant Schubert calculus

**3** Whittaker vectors

**4** 3d mirror symmetry and hypergeometric integrals

Let λ = (λ<sub>1</sub> ≥ · · · ≥ λ<sub>r</sub> ≥ 0) be a partition of N ∈ N. We also denote by λ the Young diagram of size |λ| = N with rows of length λ<sub>1</sub> . . . , λ<sub>r</sub>.



The Young diagram  $\lambda = (6, 4, 1)$ 

Let λ = (λ<sub>1</sub> ≥ · · · ≥ λ<sub>r</sub> ≥ 0) be a partition of N ∈ N. We also denote by λ the Young diagram of size |λ| = N with rows of length λ<sub>1</sub> . . . , λ<sub>r</sub>.



The Young diagram  $\lambda = (6, 4, 1)$ 

• The classical hook length formula relates the number of standard Young tableaux of shape  $\lambda$  to the product of lengths of hooks.

- A standard Young tableau of shape λ is a bijection λ → {1,..., N} on the set of boxes which is increasing in both directions.
- It can be thought as a path Ø ⊂ λ<sub>1</sub> ⊂ · · · ⊂ λ<sub>N</sub> = λ of Young diagtrams obtained from the empty diagram by adding one box at a time.



- A standard Young tableau of shape λ is a bijection λ → {1,..., N} on the set of boxes which is increasing in both directions.
- It can be thought as a path Ø ⊂ λ<sub>1</sub> ⊂ · · · ⊂ λ<sub>N</sub> = λ of Young diagtrams obtained from the empty diagram by adding one box at a time.



The hook H(b) of a box b ∈ λ is the subset consisting of b and all boxes of λ above b and to its right. Its cardinality is the hook length ℓ<sub>b</sub>.



#### Theorem

(Frame, Robinson, Thrall 1953) For any partition  $\lambda$  of N the number  $f^{\lambda}$  of Young tableaux of shape  $\lambda$  is

$$f^{\lambda} = \frac{N!}{\prod_{b \in \lambda} \ell_b}$$

#### Theorem

(Frame, Robinson, Thrall 1953) For any partition  $\lambda$  of N the number  $f^{\lambda}$  of Young tableaux of shape  $\lambda$  is

$$f^{\lambda} = \frac{N!}{\prod_{b \in \lambda} \ell_b}$$

• For example, has a hook of length 3 and two hooks of length 1. It has thus  $3!/3 \cdot 1 \cdot 1 = 2$  tableaux, namely

#### Theorem

(Frame, Robinson, Thrall 1953) For any partition  $\lambda$  of N the number  $f^{\lambda}$  of Young tableaux of shape  $\lambda$  is

$$f^{\lambda} = \frac{N!}{\prod_{b \in \lambda} \ell_b}$$

• For example, has a hook of length 3 and two hooks of length 1. It has thus  $3!/3 \cdot 1 \cdot 1 = 2$  tableaux, namely

•  $f^{\lambda}$  is the dimension of the irreducible representation of  $S_N$  labeled by  $\lambda$ .

### Hook length formula for skew diagrams

A skew Young diagram λ/μ is a pair μ ⊂ λ consisting of a diagram and a subdiagram. The size of λ/μ is N = |λ \ μ|.

## Hook length formula for skew diagrams

- A skew Young diagram λ/μ is a pair μ ⊂ λ consisting of a diagram and a subdiagram. The size of λ/μ is N = |λ \ μ|.
- A standard Young tableau of shape λ/μ is a bijection λ \ μ → {1,..., N} increasing in both direction.



Alternatively, it is a path  $\mu = \mu_0 \subset \mu_1 \subset \cdots \subset \mu_N = \lambda$  of embedded Young diagrams from  $\mu$  to  $\lambda$  such that  $|\mu_i - \mu_{i-1}| = 1$ .

## Hook length formula for skew diagrams

- A skew Young diagram λ/μ is a pair μ ⊂ λ consisting of a diagram and a subdiagram. The size of λ/μ is N = |λ \ μ|.
- A standard Young tableau of shape λ/μ is a bijection λ \ μ → {1,..., N} increasing in both direction.



Alternatively, it is a path  $\mu = \mu_0 \subset \mu_1 \subset \cdots \subset \mu_N = \lambda$  of embedded Young diagrams from  $\mu$  to  $\lambda$  such that  $|\mu_i - \mu_{i-1}| = 1$ .

• H. Naruse gave a subtraction free combinatorial formula for the number of standard Young tableaux of skew shape in terms of hook lengths of excited diagrams.

• To define this notion it is better to rotate Young diagrams by 45°.

- To define this notion it is better to rotate Young diagrams by 45°.
- Let ν be a subset of λ. A box of ν is called active if its upper left and upper right neighbours belong to λ but are not in ν.

- To define this notion it is better to rotate Young diagrams by 45°.
- Let ν be a subset of λ. A box of ν is called active if its upper left and upper right neighbours belong to λ but are not in ν.
- An elementary excitation (or ladder move) of a subset  $\nu$  of a Young diagram  $\lambda$  is a subset obtained by moving one active box of  $\nu$  up one step.



- To define this notion it is better to rotate Young diagrams by 45°.
- Let ν be a subset of λ. A box of ν is called active if its upper left and upper right neighbours belong to λ but are not in ν.
- An elementary excitation (or ladder move) of a subset  $\nu$  of a Young diagram  $\lambda$  is a subset obtained by moving one active box of  $\nu$  up one step.



#### Definition

(Kreiman 2005, Ikeda, Naruse 2009) An excited diagram of the skew diagram  $\lambda/\mu$  is a subset of  $\lambda$  obtained from  $\mu$  by a sequence of elementary excitations.







The skew diagram  $\lambda/\mu = (6,6,5,3,1)/(3,1)$ 

An excited diagram of  $\lambda/\mu$ .

### Naruse's hook length formula

#### Theorem (Naruse 2014)

Let  $\lambda/\mu$  be a skew Young diagram of size  $N = |\lambda - \mu|$ . The number of standard Young tableaux of shape  $\lambda/\mu$  is

$$f^{\lambda/\mu} = \sum_{\nu \in E(\lambda/\mu)} \frac{N!}{\prod_{b \in \lambda \smallsetminus \nu} \ell_b}$$

The summation is over the set of excited diagrams of  $\lambda/\mu$ 

#### Naruse's hook length formula

#### Theorem (Naruse 2014)

Let  $\lambda/\mu$  be a skew Young diagram of size  $N = |\lambda - \mu|$ . The number of standard Young tableaux of shape  $\lambda/\mu$  is

$$\mathcal{E}^{\lambda/\mu} = \sum_{\nu \in E(\lambda/\mu)} \frac{N!}{\prod_{b \in \lambda \smallsetminus \nu} \ell_b}$$

The summation is over the set of excited diagrams of  $\lambda/\mu$ 

• It will be convenient to define the rational numbers  $g^{\lambda/\mu} = f^{\lambda/\mu}/N!$ . Then  $g^{\lambda/\lambda} = 1$  and since  $E(\lambda/\emptyset) = \{\emptyset\}$  we recover the classical hook length formula

$$g^{\lambda/\varnothing} = rac{f^{\lambda/\varnothing}}{N!} = rac{1}{\prod_{b\in\lambda}\ell_b}$$

### Multivariate hook formulas

• These formulae are specialization at  $x_1 = \cdots = x_{n-1} = 1$  of identities between rational functions in several "equivariant" variables.

### Multivariate hook formulas

- These formulae are specialization at  $x_1 = \cdots = x_{n-1} = 1$  of identities between rational functions in several "equivariant" variables.
- Let  $I_{r,n-r}$  be the set of Young diagrams fitting in an  $r \times (n-r)$  rectangle. Assign variables  $x_1, \ldots, x_{n-1}$  to boxes of  $\lambda \in I_{r,n-r}$  from left to right, the same variable is assigned to boxes above each other. Let  $x(b) \in \{x_1, \ldots, x_{n-1}\}$  be the variable assigned to  $b \in \lambda$ .



### Multivariate hook formula

• The hook weight of  $b \in \lambda$  is

$$\ell_b(x) = \sum_{b' \in H(b)} x(b') = x_i + x_{i+1} + \dots + x_j.$$

#### Multivariate hook formula

• The hook weight of  $b \in \lambda$  is



• The weight of a skew diagram  $\lambda/\mu$  is

$$w_{\lambda/\mu}(x) = \sum_{b \in \lambda \smallsetminus \mu} x(b) = \sum k_i x_i$$

where  $k_i$  is the number of boxes in  $\lambda \setminus \mu$  labeled by  $x_i$ .

#### Naruse's multivariate hook formula

#### Theorem (Naruse 2014)

Let  $\lambda/\mu$  be a skew diagram of size N.

 $\land$ 

$$\sum_{\mu=\mu_0\subset\mu_1\subset\cdots\subset\mu_N=\lambda}\frac{1}{\prod_{i=1}^N w_{\lambda/\mu_i}(x)}=\sum_{\nu\in E(\lambda/\mu)}\frac{1}{\prod_{b\in\lambda\smallsetminus\nu}\ell_b(x)}$$

The summation on the left is over standard Young tableaux of shape  $\lambda/\mu$ , i.e., paths from  $\mu$  to  $\lambda$  such that  $|\mu_i - \mu_{i-1}| = 1$ 

#### Example

 $\lambda \equiv$ 

(2,1), 
$$\mu = \emptyset$$
.  

$$\frac{1}{(x_1 + x_2 + x_3)(x_1 + x_3)x_3} + \frac{1}{(x_1 + x_2 + x_3)(x_1 + x_3)x_1} = \frac{1}{x_1(x_1 + x_2 + x_3)x_3}.$$

#### Reformulation: Pieri-type recurrence relation

We can reformulate this theorem by saying that the right-hand side of

$$g^{\lambda/\mu}(x) = \sum_{
u \in E(\lambda/\mu)} rac{1}{\prod_{b \in \lambda \smallsetminus 
u} \ell_b(x)}$$

is the solution of the Pieri-type recurrence relation

$$g^{\lambda/\mu}(x)=rac{1}{w_{\lambda/\mu}(x)}\sum_{\mu'
ightarrow\mu}g^{\lambda/\mu'}(x),$$

where the sum is over Young subdiagrams  $\mu'\subset\lambda$  obtained for  $\mu$  by adding one box, with initial condition

$$g^{\lambda/\lambda}(x) = 1$$

- Equivariant Schubert calculus. This is the context where the formulae were discovered.
- Whittaker vectors in tensor products of dual Verma modules with fundamental modules.
- Multidimensional hypergeometric functions and 3D mirror symmetry.

• The torus  $T = U(1)^n \subset U(n)$  acts on the Grassmannian  $X = \operatorname{Gr}_r(\mathbb{C}^n)$  with isolated fixed points  $p_{\lambda}$  labeled by Young diagrams  $\lambda \in I_{r,n-r}$ .

- The torus  $T = U(1)^n \subset U(n)$  acts on the Grassmannian  $X = \operatorname{Gr}_r(\mathbb{C}^n)$  with isolated fixed points  $p_{\lambda}$  labeled by Young diagrams  $\lambda \in I_{r,n-r}$ .
- The equivariant cohomology  $H_T(X)$  of X is the free module over  $H_T(pt) = \mathbb{Z}[t_1, \dots, t_n]$  with basis the Schubert classes  $[X_{\lambda}] = [\overline{B^- \rho_{\lambda}}]$ .

- The torus  $T = U(1)^n \subset U(n)$  acts on the Grassmannian  $X = \operatorname{Gr}_r(\mathbb{C}^n)$  with isolated fixed points  $p_{\lambda}$  labeled by Young diagrams  $\lambda \in I_{r,n-r}$ .
- The equivariant cohomology  $H_T(X)$  of X is the free module over  $H_T(pt) = \mathbb{Z}[t_1, \dots, t_n]$  with basis the Schubert classes  $[X_{\lambda}] = [\overline{B^- \rho_{\lambda}}]$ .
- The inclusion maps  $i_{\lambda} \colon \{p_{\lambda}\} \to X$  of fixed points define a monomorphism

$$i^* \colon H_T(X) \to H_T(X^T) = \bigoplus_{p \in X^T} \mathbb{Z}[t_1, \ldots, t_n]$$

of graded algebras over  $\mathbb{Z}[t_1, \ldots, t_n]$  with deg  $t_i = 2$ .

- The torus  $T = U(1)^n \subset U(n)$  acts on the Grassmannian  $X = \operatorname{Gr}_r(\mathbb{C}^n)$  with isolated fixed points  $p_{\lambda}$  labeled by Young diagrams  $\lambda \in I_{r,n-r}$ .
- The equivariant cohomology  $H_T(X)$  of X is the free module over  $H_T(pt) = \mathbb{Z}[t_1, \dots, t_n]$  with basis the Schubert classes  $[X_{\lambda}] = [\overline{B^- \rho_{\lambda}}]$ .
- The inclusion maps  $i_{\lambda} \colon \{p_{\lambda}\} \to X$  of fixed points define a monomorphism

$$i^* \colon H_T(X) \to H_T(X^T) = \bigoplus_{p \in X^T} \mathbb{Z}[t_1, \ldots, t_n]$$

of graded algebras over  $\mathbb{Z}[t_1, \ldots, t_n]$  with deg  $t_i = 2$ .

Proposition (Okounkov 1996, Molev–Sagan 1999, Knutson–Tao 2003, Mihalcea 2005, Naruse 2014)

For all  $\mu \subset \lambda \in I_{r,n-r}$ ,  $g^{\lambda/\mu}(x) = i^*_{\mu}[X_{\lambda}]/i^*_{\lambda}[X_{\lambda}]$ ,  $x_i = t_{i+1} - t_i$  solves the Pieri-type recurrence relation.

#### Proposition

For all  $\mu \subset \lambda \in I_{r,n-r}$ ,  $g^{\lambda/\mu}(x) = i^*_{\mu}[X_{\lambda}]/i^*_{\lambda}[X_{\lambda}]$ ,  $x_i = t_{i+1} - t_i$  solves the Pieri-type recurrence relation.

#### Proposition

For all  $\mu \subset \lambda \in I_{r,n-r}$ ,  $g^{\lambda/\mu}(x) = i^*_{\mu}[X_{\lambda}]/i^*_{\lambda}[X_{\lambda}]$ ,  $x_i = t_{i+1} - t_i$  solves the Pieri-type recurrence relation.

• The recurrence relation for  $i^*_{\mu}[X_{\lambda}] = C^{\mu}_{\lambda\mu}(t)$  follows from the Chevalley formula for equivariant Littlewood–Richardson coefficients.

#### Proposition

For all  $\mu \subset \lambda \in I_{r,n-r}$ ,  $g^{\lambda/\mu}(x) = i^*_{\mu}[X_{\lambda}]/i^*_{\lambda}[X_{\lambda}]$ ,  $x_i = t_{i+1} - t_i$  solves the Pieri-type recurrence relation.

- The recurrence relation for  $i^*_{\mu}[X_{\lambda}] = C^{\mu}_{\lambda\mu}(t)$  follows from the Chevalley formula for equivariant Littlewood–Richardson coefficients.
- On the other hand one has the AJS/Billey formula for i<sup>\*</sup><sub>μ</sub>[X<sub>λ</sub>] (Andersen–Jantzen–Soergel 1994, Billey 1999, Kumar 2002), which can be recast into a sum over excited diagrams.

#### Proposition

For all  $\mu \subset \lambda \in I_{r,n-r}$ ,  $g^{\lambda/\mu}(x) = i^*_{\mu}[X_{\lambda}]/i^*_{\lambda}[X_{\lambda}]$ ,  $x_i = t_{i+1} - t_i$  solves the Pieri-type recurrence relation.

- The recurrence relation for  $i^*_{\mu}[X_{\lambda}] = C^{\mu}_{\lambda\mu}(t)$  follows from the Chevalley formula for equivariant Littlewood–Richardson coefficients.
- On the other hand one has the AJS/Billey formula for i<sup>\*</sup><sub>μ</sub>[X<sub>λ</sub>] (Andersen–Jantzen–Soergel 1994, Billey 1999, Kumar 2002), which can be recast into a sum over excited diagrams.
- This generalizes to generalized flag manifolds G/P and to equivariant K-theory and their quantum version.

# Whittaker vectors (Kostant 1978)

Let n<sup>-</sup> ⊂ g = gl<sub>n</sub>(C) be the maximal nilpotent of lower triangular matrices. It is generated by f<sub>i</sub> = E<sub>i+1,i</sub>, (i = 1,..., n − 1). Let η: n<sup>-</sup> → C be the character such that η(f<sub>i</sub>) = −1 for all i.

# Whittaker vectors (Kostant 1978)

- Let n<sup>-</sup> ⊂ g = gl<sub>n</sub>(C) be the maximal nilpotent of lower triangular matrices. It is generated by f<sub>i</sub> = E<sub>i+1,i</sub>, (i = 1,..., n − 1). Let η: n<sup>-</sup> → C be the character such that η(f<sub>i</sub>) = −1 for all i.
- A Whittaker vector (for the character  $\eta$ ) in a g-module V is a vector  $v \in V$  such that

$$xv = \eta(x)v$$
 for all  $x \in \mathfrak{n}^-$ .

# Whittaker vectors (Kostant 1978)

- Let n<sup>-</sup> ⊂ g = gl<sub>n</sub>(C) be the maximal nilpotent of lower triangular matrices. It is generated by f<sub>i</sub> = E<sub>i+1,i</sub>, (i = 1,..., n − 1). Let η: n<sup>-</sup> → C be the character such that η(f<sub>i</sub>) = −1 for all i.
- A Whittaker vector (for the character  $\eta$ ) in a g-module V is a vector  $v \in V$  such that

$$xv = \eta(x)v$$
 for all  $x \in \mathfrak{n}^-$ .

• The space Wh(V) of Whittaker vectors in V is a module over the centre  $Z = Z(U\mathfrak{g})$  of the universal enveloping algebra of  $\mathfrak{g}$ .

# Whittaker vectors (Kostant 1978)

- Let n<sup>-</sup> ⊂ g = gl<sub>n</sub>(C) be the maximal nilpotent of lower triangular matrices. It is generated by f<sub>i</sub> = E<sub>i+1,i</sub>, (i = 1,..., n − 1). Let η: n<sup>-</sup> → C be the character such that η(f<sub>i</sub>) = −1 for all i.
- A Whittaker vector (for the character  $\eta$ ) in a g-module V is a vector  $v \in V$  such that

$$xv = \eta(x)v$$
 for all  $x \in \mathfrak{n}^-$ .

- The space Wh(V) of Whittaker vectors in V is a module over the centre  $Z = Z(U\mathfrak{g})$  of the universal enveloping algebra of  $\mathfrak{g}$ .
- If v ∈ Wh(V) \ {0} and zv = χ(z)v for all z ∈ Z for some character χ: Z → C of the commutative algebra Z, then one says that v has infinitesimal character χ.

• Let  $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$  be the Gauss decomposition,  $\rho \in \mathfrak{h}^*$  the half-sum of positive roots.

- Let  $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$  be the Gauss decomposition,  $\rho \in \mathfrak{h}^*$  the half-sum of positive roots.
- The Verma module  $M_t$  of highest weight  $t \in \mathfrak{h}^* \cong \mathbb{C}^n$  is generated by a vector  $v_t$  of weight t killed by  $\mathfrak{n}^+$  and is free over  $U(\mathfrak{n}^-)$ .

- Let g = n<sup>−</sup> ⊕ h ⊕ n<sup>+</sup> be the Gauss decomposition, ρ ∈ h<sup>\*</sup> the half-sum of positive roots.
- The Verma module  $M_t$  of highest weight  $t \in \mathfrak{h}^* \cong \mathbb{C}^n$  is generated by a vector  $v_t$  of weight t killed by  $\mathfrak{n}^+$  and is free over  $U(\mathfrak{n}^-)$ .

#### Lemma

The space of Whittaker vectors in the dual module  $M'_{t-\rho} = \operatorname{Hom}_{\mathbb{C}}(M_{t-\rho}, \mathbb{C})$  is 1-dimensional, spanned by  $\psi$  such that

$$\psi(f_{i_1}\cdots f_{i_k}v_{t-\rho})=1$$
 for all  $1\leq i_1,\ldots,i_k\leq n-1$ .

- Let  $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$  be the Gauss decomposition,  $\rho \in \mathfrak{h}^*$  the half-sum of positive roots.
- The Verma module  $M_t$  of highest weight  $t \in \mathfrak{h}^* \cong \mathbb{C}^n$  is generated by a vector  $v_t$  of weight t killed by  $\mathfrak{n}^+$  and is free over  $U(\mathfrak{n}^-)$ .

#### Lemma

The space of Whittaker vectors in the dual module  $M'_{t-\rho} = \operatorname{Hom}_{\mathbb{C}}(M_{t-\rho}, \mathbb{C})$  is 1-dimensional, spanned by  $\psi$  such that

 $\psi(f_{i_1}\cdots f_{i_k}v_{t-\rho})=1$  for all  $1\leq i_1,\ldots,i_k\leq n-1$ .

The centre Z acts on M'<sub>t-ρ</sub> via a character χ(t): Z → C. In particular ψ has infinitesimal character χ(t).

• Let  $U_r = \bigwedge^r \mathbb{C}^n$  be the *r*-th fundamental module of  $\mathfrak{g} = \mathfrak{gl}_n$ , (r = 1, ..., n-1). It has a basis  $u_\mu = e_{i_1} \land \cdots \land e_{i_r}$  in 1-1 correspondence with Young diagrams  $\mu \in I_{r,n}$  fitting in a  $r \times (n-r)$ -rectangle. Let wt $(\mu) \in \mathfrak{h}^*$  denote the weight of  $u_\mu$ .

- Let  $U_r = \bigwedge^r \mathbb{C}^n$  be the *r*-th fundamental module of  $\mathfrak{g} = \mathfrak{gl}_n$ , (r = 1, ..., n 1). It has a basis  $u_\mu = e_{i_1} \land \cdots \land e_{i_r}$  in 1-1 correspondence with Young diagrams  $\mu \in I_{r,n}$  fitting in a  $r \times (n r)$ -rectangle. Let wt $(\mu) \in \mathfrak{h}^*$  denote the weight of  $u_\mu$ .
- Example:  $r = 3, n = 8, u_{\mu} = e_4 \wedge e_6 \wedge e_8, wt(\mu) = (0, 0, 0, 1, 0, 1, 0, 1).$



- Let  $U_r = \bigwedge^r \mathbb{C}^n$  be the *r*-th fundamental module of  $\mathfrak{g} = \mathfrak{gl}_n$ , (r = 1, ..., n-1). It has a basis  $u_\mu = e_{i_1} \land \cdots \land e_{i_r}$  in 1-1 correspondence with Young diagrams  $\mu \in I_{r,n}$  fitting in a  $r \times (n-r)$ -rectangle. Let wt $(\mu) \in \mathfrak{h}^*$  denote the weight of  $u_\mu$ .
- Example:  $r = 3, n = 8, u_{\mu} = e_4 \wedge e_6 \wedge e_8, wt(\mu) = (0, 0, 0, 1, 0, 1, 0, 1).$



 It follows from results of Kostant that Wh(M'<sub>t-ρ</sub> ⊗ U<sub>r</sub>) has dimension dim(U<sub>r</sub>) = (<sup>n</sup><sub>r</sub>). How does the centre Z act?

#### Theorem (FSTV 2023)

Let  $t \in \mathfrak{h}^*$  be generic and let  $x_i = t_{i+1} - t_i$  (i = 1, ..., n-1). For  $\lambda \in I_{r,n-r}$  there is a unique Whittaker vector  $\beta_{\lambda} \in M'_{t-\rho} \otimes U_r \cong \operatorname{Hom}_{\mathbb{C}}(M_{t-\rho}, U_r)$  such that

$$eta_\lambda(\mathsf{v}_{t-
ho}) = \sum_{\mu\subset\lambda} g^{\lambda/\mu}(t) u_\mu, \quad g^{\lambda/\mu}(t) = \sum_{
u\in E(\lambda/\mu)} rac{1}{\prod_{b\in\lambda\smallsetminus
u}\ell_b(x)},$$

It is a simultaneaous eigenvector for the action of Z with infinitesimal character  $\chi(t - wt(\lambda))$ . The vectors  $\beta_{\lambda}$  form a basis of the space of Whittaker vectors.

#### Theorem (FSTV 2023)

Let  $t \in \mathfrak{h}^*$  be generic and let  $x_i = t_{i+1} - t_i$  (i = 1, ..., n-1). For  $\lambda \in I_{r,n-r}$  there is a unique Whittaker vector  $\beta_{\lambda} \in M'_{t-\rho} \otimes U_r \cong \operatorname{Hom}_{\mathbb{C}}(M_{t-\rho}, U_r)$  such that

$$eta_\lambda(\mathsf{v}_{t-
ho}) = \sum_{\mu\subset\lambda} \mathsf{g}^{\lambda/\mu}(t) \mathsf{u}_\mu, \quad \mathsf{g}^{\lambda/\mu}(t) = \sum_{
u\in E(\lambda/\mu)} rac{1}{\prod_{b\in\lambda\smallsetminus 
u}\ell_b(x)},$$

It is a simultaneaous eigenvector for the action of Z with infinitesimal character  $\chi(t - wt(\lambda))$ . The vectors  $\beta_{\lambda}$  form a basis of the space of Whittaker vectors.

 Sketch of proof The condition for β to be a Whittaker vector with an infinitesimal character can be translated into the Pieri-type recurrence relation for g<sup>λ/μ</sup>(x)

To a Nakajima quiver variety X one associates hypergeometric integrals called vertex function V(X) and capping operator I(X) predicting by 3d mirror symmetry to encode the enumerative geometry of quasi-maps (with different boundary conditions) from P<sup>1</sup> to the 3d mirror dual X<sup>!</sup>. (Okounkov 2015, Aganagic–Okounkov 2017)

- To a Nakajima quiver variety X one associates hypergeometric integrals called vertex function V(X) and capping operator I(X) predicting by 3d mirror symmetry to encode the enumerative geometry of quasi-maps (with different boundary conditions) from P<sup>1</sup> to the 3d mirror dual X<sup>!</sup>. (Okounkov 2015, Aganagic–Okounkov 2017)
- To a Young diagram  $\lambda$  one associates a quiver and a (0-dimensional) Nakajima variety  $X_{\lambda} = T^* Rep_{\nu,w} / / / / G_{\nu} = \mu^{-1}(0) / / G_{\nu}$ .



• Thus we have a vertex function  $V_{\lambda}$  and a capping operator  $I_{\lambda}$ . Since the cohomology of  $X_{\lambda}$  is one-dimensional one expect them to be proportional.

• Thus we have a vertex function  $V_{\lambda}$  and a capping operator  $I_{\lambda}$ . Since the cohomology of  $X_{\lambda}$  is one-dimensional one expect them to be proportional.

Theorem (FSTV 2003)  $V_{\lambda}(z,\kappa) = \frac{1}{\prod_{b \in \lambda} (\ell_b(z) + 1)} I_{\lambda}(z,\kappa).$ 

• Thus we have a vertex function  $V_{\lambda}$  and a capping operator  $I_{\lambda}$ . Since the cohomology of  $X_{\lambda}$  is one-dimensional one expect them to be proportional.

Theorem (FSTV 2003)

$$V_\lambda(z,\kappa) = rac{1}{\prod_{b\in\lambda}(\ell_b(z)+1)} I_\lambda(z,\kappa).$$

• These hypergeometric integrals first appeared in the study of solutions of the Knizhnik–Zamolodchikov equation.

• The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov (Schechtman–Varchenko 1991) provides in particular integral formulas for singular vectors in  $M_t \otimes U_r$ .

- The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov (Schechtman–Varchenko 1991) provides in particular integral formulas for singular vectors in  $M_t \otimes U_r$ .
- For generic t ∈ 𝔥\* and λ ∈ I<sub>r,n-r</sub> there is a singular vector, unique up to normalization, of the form

$$\chi_{\lambda} = \sum_{\mu \leq \lambda} \sum_{I \in \mathcal{A}(\lambda/\mu)} c_{I}^{\lambda/\mu}(t) f_{i_{1}} \cdots f_{i_{k}} v_{t} \otimes u_{\mu}, \quad c_{\varnothing}^{\lambda/\lambda} \neq 0.$$

The sum is over  $I = (i_1, \ldots, i_k)$  such that  $wt(\mu) = wt(\lambda) + \alpha_{i_1} + \cdots + \alpha_{i_k}$ 

- The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov (Schechtman–Varchenko 1991) provides in particular integral formulas for singular vectors in  $M_t \otimes U_r$ .
- For generic t ∈ 𝔥\* and λ ∈ I<sub>r,n-r</sub> there is a singular vector, unique up to normalization, of the form

$$\chi_{\lambda} = \sum_{\mu \leq \lambda} \sum_{I \in \mathcal{A}(\lambda/\mu)} c_{I}^{\lambda/\mu}(t) f_{i_{1}} \cdots f_{i_{k}} v_{t} \otimes u_{\mu}, \quad c_{\varnothing}^{\lambda/\lambda} \neq 0.$$

The sum is over  $I = (i_1, \ldots, i_k)$  such that  $\mathsf{wt}(\mu) = \mathsf{wt}(\lambda) + \alpha_{i_1} + \cdots + \alpha_{i_k}$ 

• Pick any generic  $\kappa \in \mathbb{C}$ . The coefficients are hypergeometric integrals of the form

$$c_I^{\lambda/\mu}(t) = \int_\gamma \Phi_\lambda(s,t)^{rac{1}{\kappa}} W_I(s) \prod ds_{i,j}$$

• The coefficients are hypergeometric integrals of the form

$$c_I^{\lambda/\mu}(t) = \int_\gamma \Phi_\lambda(s,t)^{rac{1}{\kappa}} W_I(s) \prod ds_{i,j}$$

• The coefficients are hypergeometric integrals of the form

$$c_I^{\lambda/\mu}(t) = \int_{\gamma} \Phi_{\lambda}(s,t)^{rac{1}{\kappa}} W_I(s) \prod ds_{i,j}$$

 Let wt(λ) = ∞<sub>r</sub> - ∑<sub>i=1</sub><sup>n-1</sup> k<sub>i</sub>α<sub>i</sub> Then we have k<sub>i</sub> integration variables s<sub>i,j</sub> (j = 1,..., k<sub>i</sub>) associated with the simple root α<sub>i</sub> (one integration variable for each box of λ). Let k = ∑<sub>k<sub>i</sub></sub> = |λ|. The master function is

$$\Phi_\lambda(s,t) = \prod_{(i,j)} s_{i,j}^{-(lpha_i,t)} (s_{i,j}-1)^{-(lpha_i,arpi_r)} \prod_{(i,j)<(i',j')} (s_{i,j}-s_{i',j'})^{(lpha_i,lpha_{i'})}$$

• The coefficients are hypergeometric integrals of the form

$$c_I^{\lambda/\mu}(t) = \int_{\gamma} \Phi_{\lambda}(s,t)^{rac{1}{\kappa}} W_I(s) \prod ds_{i,j}$$

 Let wt(λ) = ∞<sub>r</sub> - Σ<sub>i=1</sub><sup>n-1</sup> k<sub>i</sub>α<sub>i</sub> Then we have k<sub>i</sub> integration variables s<sub>i,j</sub> (j = 1,..., k<sub>i</sub>) associated with the simple root α<sub>i</sub> (one integration variable for each box of λ). Let k = Σ<sub>k<sub>i</sub></sub> = |λ|. The master function is

$$\Phi_\lambda(s,t) = \prod_{(i,j)} s_{i,j}^{-(lpha_i,t)} (s_{i,j}-1)^{-(lpha_i,arpi_r)} \prod_{(i,j)<(i',j')} (s_{i,j}-s_{i',j'})^{(lpha_i,lpha_{i'})}$$

 The weight functions W<sub>l</sub>(s) are certain rational functions and γ ∈ H<sub>k</sub>(C, L<sub>κ</sub>)<sup>-</sup> is a ∏<sub>i=1</sub> S<sub>ki</sub>-antiinvariant cycle with coefficients in the local system on a complement of hyperplanes in C<sup>k</sup> defined by the many-valued function Φ<sup>1/κ</sup><sub>λ</sub>.

• The integrals  $c_I^{\lambda/\mu}(t)$  are complicated objects but their sums  $c^{\lambda/\mu}(t) = \sum_{I \in A(\lambda/\mu)} c_I^{\lambda/\mu}(t)$  turn out to be much simpler.

• The integrals  $c_I^{\lambda/\mu}(t)$  are complicated objects but their sums  $c^{\lambda/\mu}(t) = \sum_{I \in A(\lambda/\mu)} c_I^{\lambda/\mu}(t)$  turn out to be much simpler.

Theorem (FSTV 2023)

Let  $t' = t - \rho - wt(\lambda)$ . Then  $c^{\lambda/\mu}(t') = g^{\lambda/\mu}(x)c^{\lambda/\lambda}(t')$ ,  $x_i = t_{i+1} - t_i$ . In particular,

$$c^{\lambda/arnothing}(t') = \prod_{b\in\lambda}rac{1}{\ell_b(x)}c^{\lambda/\lambda}(t').$$

• The integrals  $c_I^{\lambda/\mu}(t)$  are complicated objects but their sums  $c^{\lambda/\mu}(t) = \sum_{I \in A(\lambda/\mu)} c_I^{\lambda/\mu}(t)$  turn out to be much simpler.

Theorem (FSTV 2023)

Let  $t' = t - \rho - wt(\lambda)$ . Then  $c^{\lambda/\mu}(t') = g^{\lambda/\mu}(x)c^{\lambda/\lambda}(t')$ ,  $x_i = t_{i+1} - t_i$ . In particular,

$$c^{\lambda/arnothing}(t') = \prod_{b\in\lambda}rac{1}{\ell_b(x)}c^{\lambda/\lambda}(t').$$

The hypergeometric integrals c<sup>λ/∅</sup> and c<sup>λ/λ</sup> are the putative enumerative invariants of X<sup>!</sup><sub>λ</sub> More precisely,

The integral c<sup>λ/Ø</sup>(t') is (up to a shift of variables) the vertex function. It simplifies to

$$V_\lambda(t',\kappa) = \int_\gamma \Phi_\lambda(s,t')^{rac{1}{\kappa}} \prod {ds_{i,j}\over s_{i,j}}$$

The integral c<sup>λ/Ø</sup>(t') is (up to a shift of variables) the vertex function. It simplifies to

$$V_\lambda(t',\kappa) = \int_\gamma \Phi_\lambda(s,t')^rac{1}{\kappa} \prod rac{ds_{i,j}}{s_{i,j}}$$

• The (properly normalized) integral  $c^{\lambda/\lambda}(t')$  is the capping operator

$$I_\lambda(t'.\kappa) = \int_\gamma \Phi_\lambda(s,t')^{rac{1}{\kappa}} W_arnothing(s) \prod ds_{i,j}.$$

The integral c<sup>λ/Ø</sup>(t') is (up to a shift of variables) the vertex function. It simplifies to

$$V_\lambda(t',\kappa) = \int_\gamma \Phi_\lambda(s,t')^{rac{1}{\kappa}} \prod {ds_{i,j}\over s_{i,j}}$$

• The (properly normalized) integral  $c^{\lambda/\lambda}(t')$  is the capping operator

$$I_\lambda(t'.\kappa) = \int_\gamma \Phi_\lambda(s,t')^{rac{1}{\kappa}} W_arnothing(s) \prod ds_{i,j}.$$

# Thanks for your attention!