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Hook length formula

® Let A= (A1 >---> A\, >0) be a partition of N € N. We also denote by A the
Young diagram of size |A| = N with rows of length A1 ..., A,.

The Young diagram A = (6,4, 1)
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Hook length formula

® Let A= (A1 >---> A\, >0) be a partition of N € N. We also denote by A the
Young diagram of size |A| = N with rows of length A1 ..., A,.

The Young diagram A = (6,4, 1)
® The classical hook length formula relates the number of standard Young tableaux
of shape A to the product of lengths of hooks.
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Hook length formula

e A standard Young tableau of shape A is a bijection A — {1,..., N} on the set of
boxes which is increasing in both directions.

® |t can be thought as a path @ C A1 C --- C Ay = A of Young diagtrams obtained

3

1

2] 4]

from the empty diagram by adding one box at a time.
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Hook length formula

e A standard Young tableau of shape A is a bijection A — {1,..., N} on the set of

boxes which is increasing in both directions.

® |t can be thought as a path @ C A1 C --- C Ay = A of Young diagtrams obtained

from the empty diagram by adding one box at a time.
3

1[2]4] ocJc[]]c c

[

® The hook H(b) of a box b € X is the subset consisting of b and all boxes of A

above b and to its right. Its cardinality is the hook length £,.

b
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Hook length formula

Theorem

(Frame, Robinson, Thrall 1953) For any partition A of N the number f* of Young

tableaux of shape A is
N!

= :
Hbe)\ Cp
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Hook length formula

Theorem

(Frame, Robinson, Thrall 1953) For any partition A of N the number f* of Young
tableaux of shape A is

PN
Hbe)\ Cp
® For example, | has a hook of length 3 and two hooks of length 1. It has thus
31/3-.1-1 =2 tableaux, namely
2] [3]
1[3] [1]2]
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Theorem

Hook length formula

(Frame, Robinson, Thrall 1953) For any partition A of N the number f* of Young

tableaux of shape A is

® For example,

f')\

31/3-.1-1 =2 tableaux, namely

; Hbe)\ by

| has a hook of length 3 and two hooks of length 1. It has thus

1[3]

2]

e f* is the dimension of the irreducible representation of Sy labeled by \.
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Hook length formula for skew diagrams

¢ A skew Young diagram A\/u is a pair i C A consisting of a diagram and a
subdiagram. The size of A/ is N = |A ~ pl.
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Hook length formula for skew diagrams

¢ A skew Young diagram A\/u is a pair i C A consisting of a diagram and a
subdiagram. The size of A/ is N = |A ~ pl.

e A standard Young tableau of shape A/pu is a bijection A~ p— {1,..., N}
increasing in both direction.

(14
2

3]

Alternatively, it is a path pn = po C pi1 C -+ C uny = A of embedded Young
diagrams from p to A such that |p; — pi—1| = 1.
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Hook length formula for skew diagrams

¢ A skew Young diagram A\/u is a pair i C A consisting of a diagram and a
subdiagram. The size of A/ is N = |A ~ pl.

e A standard Young tableau of shape A/pu is a bijection A~ p— {1,..., N}

increasing in both direction.

Alternatively, it is a path pn = po C pi1 C -+ C uny = A of embedded Young

(14
2

3]

diagrams from p to A such that |p; — pi—1| = 1.

® H. Naruse gave a subtraction free combinatorial formula for the number of
standard Young tableaux of skew shape in terms of hook lengths of excited

diagrams.
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Excited diagrams

® To define this notion it is better to rotate Young diagrams by 45°.
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Excited diagrams

® To define this notion it is better to rotate Young diagrams by 45°.
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Excited diagrams

® To define this notion it is better to rotate Young diagrams by 45°.

® Let v be a subset of A. A box of v is called active if its upper left and upper right
neighbours belong to A but are not in v.

® An elementary excitation (or ladder move) of a subset v of a Young diagram X is
a subset obtained by moving one active box of v up one step.

Definition
(Kreiman 2005, Ikeda, Naruse 2009) An excited diagram of the skew diagram \/pu is a
subset of A obtained from u by a sequence of elementary excitations.

7/26



Example

The skew diagram A/ = (6,6,5,3,1)/(3,1) An excited diagram of \/pu.
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Naruse's hook length formula

Theorem (Naruse 2014)

Let A/ be a skew Young diagram of size N = |\ — pl.

The number of standard Young tableaux of shape \/u is
A — o N
VGE()\/M) Hbe)\\ll Eb

The summation is over the set of excited diagrams of \/u
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Naruse's hook length formula

Theorem (Naruse 2014)

Let \/u be a skew Young diagram of size N = |\ — pl.
The number of standard Young tableaux of shape \/u is

A _ N

VGE()\/M) Hbe)\\l/ Eb
The summation is over the set of excited diagrams of \/u

e It will be convenient to define the rational numbers g*/# = fA/#/NI. Then
g* =1 and since E(\/@) = {@} we recover the classical hook length formula
A2 1

Iz _ _

4
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Multivariate hook formulas

® These formulae are specialization at x; = --- = x,_1 = 1 of identities between
rational functions in several “equivariant” variables.
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Multivariate hook formulas

® These formulae are specialization at x; = --- = x,_1 = 1 of identities between
rational functions in several “equivariant” variables.

® Let /; h— be the set of Young diagrams fitting in an r x (n — r) rectangle. Assign
variables xi,...,x,—1 to boxes of A € [, ,_, from left to right, the same variable is
assigned to boxes above each other. Let x(b) € {x1,...,X,—1} be the variable

e
R
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Multivariate hook formula

® The hook weight of b € X is

lp(x) = Z X(b') =X+ Xi41+ 0+ X
b'eH(b)

S

&
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Multivariate hook formula

® The hook weight of b € X is

lp(x) = Z x(b') = x;i + xip1 4+ -+ + xj.
b'eH(b)

S

&

® The weight of a skew diagram \/p is
Wy /pu(x) = Z x(b) = Z kix;
beANp

where k; is the number of boxes in A ~ 1 labeled by x;. 11/26



Naruse's multivariate hook formula

Theorem (Naruse 2014)
Let \/u be a skew diagram of size N.

sl DI e

N
p=poCp1C - Cun=A [Tz Wz () veE(M\/ 1) [berww €6(x)

The summation on the left is over standard Young tableaux of shape \/pu, i.e., paths
from p to A such that |p; — pj—1| =1

G

1 1 1

Example

A=(2,1), p=2.

+ .
(x1+x+x3)(x1+x3)x3  (a+x+x3)0a+x3)a  xi(xa+x+ x3)x3 )28



Reformulation: Pieri-type recurrence relation

We can reformulate this theorem by saying that the right-hand side of

1

gA/#(x) = Hbe)\\u lp(x)

veE(N/u)

is the solution of the Pieri-type recurrence relation

i) = —— 3 P (),

where the sum is over Young subdiagrams i/ C \ obtained for i by adding one box,

with initial condition
gV x) = 1.
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Next

® Equivariant Schubert calculus. This is the context where the formulae were
discovered.

o Whittaker vectors in tensor products of dual Verma modules with fundamental
modules.

® Multidimensional hypergeometric functions and 3D mirror symmetry.
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Equivariant Schubert calculus

® The torus T = U(1)" C U(n) acts on the Grassmannian X = Gr,(C") with
isolated fixed points py labeled by Young diagrams A € /, ,_,.
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® The equivariant cohomology H7(X) of X is the free module over
Hr(pt) = Z[t1, ..., ty] with basis the Schubert classes [X)] = [B~pa].

® The inclusion maps ix: {pr} — X of fixed points define a monomorphism
i*: Hr(X) = HT(XT) = @,ex7Z[t, . . ., ti]

of graded algebras over Z[ty, ..., t,] with degt; = 2.
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Equivariant Schubert calculus

® The torus T = U(1)" C U(n) acts on the Grassmannian X = Gr,(C") with
isolated fixed points py labeled by Young diagrams A € /, ,_,.

® The equivariant cohomology H7(X) of X is the free module over
Hr(pt) = Z[t1, ..., ty] with basis the Schubert classes [X)] = [B~pa].

® The inclusion maps ix: {pr} — X of fixed points define a monomorphism
i*: Hr(X) = HT(XT) = @,ex7Z[t, . . ., ti]
of graded algebras over Z[ty, ..., t,] with degt; = 2.

Proposition (Okounkov 1996, Molev-Sagan 1999, Knutson—Tao 2003, Mihalcea
2005, Naruse 2014)

Forall u C A€ lnr, gMH(x) = i[XA/iX[Xa], xi = tiya — ti solves the Pieri-type
recurrence relation.
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Equivariant Schubert calculus

Proposition

ForalluCc A€l pr, g’\//‘(x) = i;[X,\]/i;\“[XA], X; = ti11 — t; solves the Pieri-type
recurrence relation.
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Equivariant Schubert calculus

Proposition

Forall y C A€ lrpnr, gVH(x) = in[Xal/iX[Xal, xi = tip1 — ti solves the Pieri-type
recurrence relation.

® The recurrence relation for i;[X)] = C/’\‘“(t) follows from the Chevalley formula for
equivariant Littlewood—Richardson coefficients.

16 /26



Equivariant Schubert calculus

Proposition

Forall y C A€ lrpnr, gVH(x) = in[Xal/iX[Xal, xi = tip1 — ti solves the Pieri-type
recurrence relation.

® The recurrence relation for i;[X)] = C/’\‘“(t) follows from the Chevalley formula for
equivariant Littlewood—Richardson coefficients.
® On the other hand one has the AJS/Billey formula for i;[X]
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into a sum over excited diagrams.

16 /26



Equivariant Schubert calculus

Proposition

Forall y C A€ lrpnr, gVH(x) = in[Xal/iX[Xal, xi = tip1 — ti solves the Pieri-type
recurrence relation.

® The recurrence relation for i;[X)] = C/’\‘“(t) follows from the Chevalley formula for
equivariant Littlewood—Richardson coefficients.

® On the other hand one has the AJS/Billey formula for i;[X]
(Andersen—Jantzen—Soergel 1994, Billey 1999, Kumar 2002), which can be recast
into a sum over excited diagrams.

® This generalizes to generalized flag manifolds G/P and to equivariant K-theory
and their quantum version.
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Whittaker vectors (Kostant 1978)

¢ Let n= C g = gl,(C) be the maximal nilpotent of lower triangular matrices. It is
generated by f; = Ej11;, (i=1,...,n—1). Let n: n= — C be the character such
that n(f;) = —1 for all /.

17/26



Whittaker vectors (Kostant 1978)

¢ Let n= C g = gl,(C) be the maximal nilpotent of lower triangular matrices. It is
generated by f; = Ej11;, (i=1,...,n—1). Let n: n= — C be the character such
that n(f;) = —1 for all /.

® A Whittaker vector (for the character 1) in a g-module V is a vector v € V such

that
xv=mn(x)v forall xen".
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Whittaker vectors (Kostant 1978)

Let n= C g = g[,(C) be the maximal nilpotent of lower triangular matrices. It is
generated by f; = Ej11;, (i=1,...,n—1). Let n: n= — C be the character such
that n(f;) = —1 for all /.
A Whittaker vector (for the character 1) in a g-module V is a vector v € V such
that

xv=mn(x)v forall xen".

The space Wh(V) of Whittaker vectors in V is a module over the centre
Z = Z(Ug) of the universal enveloping algebra of g.

If v.€ Wh(V) ~ {0} and zv = x(z)v for all z € Z for some character x: Z — C
of the commutative algebra Z, then one says that v has infinitesimal character x.
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Example: Whittaker vectors in dual Verma modules

e let g=n" ®hPdnt be the Gauss decomposition, p € h* the half-sum of positive
roots.
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roots.

® The Verma module M; of highest weight t € h* =2 C" is generated by a vector v;
of weight t killed by n* and is free over U(n™).
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Example: Whittaker vectors in dual Verma modules

e let g=n" ®hPdnt be the Gauss decomposition, p € h* the half-sum of positive
roots.

® The Verma module M; of highest weight t € h* =2 C" is generated by a vector v;
of weight t killed by n* and is free over U(n™).

Lemma
The space of Whittaker vectors in the dual module M;_, = Hom¢(M;—,,C) is
1-dimensional, spanned by 1) such that

P(fy - fiveiep) =1 forall 1 <i,....0k <n-—1.
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Example: Whittaker vectors in dual Verma modules

e let g=n" ®hPdnt be the Gauss decomposition, p € h* the half-sum of positive
roots.

® The Verma module M; of highest weight t € h* =2 C" is generated by a vector v;
of weight t killed by n* and is free over U(n™).

Lemma
The space of Whittaker vectors in the dual module M;_, = Hom¢(M;—,,C) is
1-dimensional, spanned by 1) such that

P(fy - fiveiep) =1 forall 1 <i,....0k <n-—1.

® The centre Z acts on M;_p via a character x(t): Z — C. In particular ¥ has
infinitesimal character x(t).
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Whittaker vectors in tensor modules

® Let U, = \"C" be the r-th fundamental module of g =gl,, (r=1,...,n—1). It
has a basis v, = e; A--- A e in 1-1 correspondence with Young diagrams . € I, ,
fitting in a r x (n — r)-rectangle. Let wt(x) € h* denote the weight of u,.
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Whittaker vectors in tensor modules

® Let U, = \"C" be the r-th fundamental module of g =gl,, (r=1,...,n—1). It
has a basis v, = e; A--- A e in 1-1 correspondence with Young diagrams . € I, ,
fitting in a r x (n — r)-rectangle. Let wt(x) € h* denote the weight of u,.

® Example: r =3,n=8, u, = es N eg A eg, wt(p) = (0,0,0,1,0,1,0,1).

O O OVe O e O e

n i
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Whittaker vectors in tensor modules

® Let U, = \"C" be the r-th fundamental module of g =gl,, (r=1,...,n—1). It
has a basis v, = e; A--- A e in 1-1 correspondence with Young diagrams . € I, ,
fitting in a r x (n — r)-rectangle. Let wt(x) € h* denote the weight of u,.

® Example: r =3,n=8, u, = es N eg A eg, wt(p) = (0,0,0,1,0,1,0,1).

O O OVe O e O e

n i

® It follows from results of Kostant that Wh(M;_, ® U;) has dimension
dim(U,) = (7). How does the centre Z act?
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Whittaker vectors in tensor modules

Theorem (FSTV 2023)

Let t € b* be generic and let x; = ti;1 —t; (i=1,...,n—1). For A € I, ,_, there is a
unique Whittaker vector ) € Mg_p ® U, = Homg(M;—,, Uy) such that

Ave—p) = Y gMH(t)u,  gMH(t) =

BCA vEE(N/ 1) Hbe)\\u eb(x)

1

It is a simultaneaous eigenvector for the action of Z with infinitesimal character
x(t —wt()\)). The vectors () form a basis of the space of Whittaker vectors.
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Whittaker vectors in tensor modules

Theorem (FSTV 2023)

Let t € b* be generic and let x; = ti;1 —t; (i=1,...,n—1). For A € I, ,_, there is a
unique Whittaker vector ) € Mg_p ® U, = Homg(M;—,, Uy) such that

1
) = 28w M= Y s,
HCA vEE(N/ 1) bex\v *b

It is a simultaneaous eigenvector for the action of Z with infinitesimal character
x(t —wt()\)). The vectors () form a basis of the space of Whittaker vectors.

® Sketch of proof The condition for 3 to be a Whittaker vector with an infinitesimal
character can be translated into the Pieri-type recurrence relation for g’\/“(x)
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3d mirror symmetry

® To a Nakajima quiver variety X one associates hypergeometric integrals called
vertex function V(X) and capping operator /(X) predicting by 3d mirror
symmetry to encode the enumerative geometry of quasi-maps (with different
boundary conditions) from P! to the 3d mirror dual X'. (Okounkov 2015,
Aganagic—Okounkov 2017)
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3d mirror symmetry

To a Nakajima quiver variety X one associates hypergeometric integrals called
vertex function V(X) and capping operator /(X) predicting by 3d mirror
symmetry to encode the enumerative geometry of quasi-maps (with different
boundary conditions) from P! to the 3d mirror dual X'. (Okounkov 2015,
Aganagic—Okounkov 2017)

To a Young diagram \ one associates a quiver and a (0-dimensional) Nakajima
variety Xy = T*Repy.w////G, = u=*(0)//G,.

SRS

Gz

1232211
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3d mirror symmetry

® Thus we have a vertex function V) and a capping operator /. Since the
cohomology of X) is one-dimensional one expect them to be proportional.
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3d mirror symmetry

® Thus we have a vertex function V) and a capping operator /. Since the

cohomology of X) is one-dimensional one expect them to be proportional.

Theorem (FSTV 2003)

1
A | A P R

22/26



3d mirror symmetry

® Thus we have a vertex function V) and a capping operator /. Since the
cohomology of X) is one-dimensional one expect them to be proportional.

Theorem (FSTV 2003)

1
A | A P R

® These hypergeometric integrals first appeared in the study of solutions of the
Knizhnik—Zamolodchikov equation.
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Hypergeometric integrals

® The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov
(Schechtman—Varchenko 1991) provides in particular integral formulas for singular
vectors in M; ® U,.
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Hypergeometric integrals

® The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov

(Schechtman—Varchenko 1991) provides in particular integral formulas for singular
vectors in M; ® U,.

® For generic t € h* and A € I, ,_, there is a singular vector, unique up to
normalization, of the form

w=> Y MO fiwou, N #o0.

BN TEA(N 1)

The sum is over | = (i1, ..., k) such that wt(p) = wt(A\) + oy + -+ +
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Hypergeometric integrals

® The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov
(Schechtman—Varchenko 1991) provides in particular integral formulas for singular
vectors in M; ® U,.

® For generic t € h* and A € I, ,_, there is a singular vector, unique up to
normalization, of the form

w=> Y MO fiwou, N #o0.

BN TEA(N 1)

The sum is over | = (i1, ..., k) such that wt(p) = wt(A\) + oy + -+ +

® Pick any generic kK € C. The coefficients are hypergeometric integrals of the form
A
/”() /Cb)\st Hds,J
.
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Hypergeometric integrals

® The coefficients are hypergeometric integrals of the form

A/”() /CID)\st Hds,d
.
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Hypergeometric integrals

® The coefficients are hypergeometric integrals of the form
)‘/“() /<D>\st Hds,d
.

e Let wt(\) = @, — 3.7} kj; Then we have k; integration variables s; ;
(j=1,...,k;) associated with the simple root «; (one integration variable for
each box of ). Let k =3, = |A|. The master function is

H S g (aj,t) (SI,J ) (ejyoor) H (Si,j _ Si’,j’)(aha/)

() (i)<(i"J")
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Hypergeometric integrals

® The coefficients are hypergeometric integrals of the form
’\/“() /<D>\st Hds,d
.

e Let wt(\) = @, — 3.7} kj; Then we have k; integration variables s; ;
(j=1,...,k;) associated with the simple root «; (one integration variable for
each box of ). Let k =3, = |A|. The master function is

Ot,, _(O"vw) ' o (a'70"/)
=Ls/ =07 = [T (s = srp)

() (i)<(i"J")

® The weight functions Wj(s) are certain rational functions and v € Hi(C, L) is
a [[;_; Sk-antiinvariant cycle with coefficients in the local system on a

complement of hyperplanes in CX defined by the many-valued function CD}\/”.
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Hypergeometric integrals

® The integrals c,’\/“(t) are complicated objects but their sums

Me(t) = Do 1EA(N 1) c,’\/“(t) turn out to be much simpler.
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Hypergeometric integrals

® The integrals c,’\/“(t) are complicated objects but their sums
Me(t) = Do 1EA(N 1) c,’\/“(t) turn out to be much simpler.

Theorem (FSTV 2023)

Let t' =t — p —wt()\). Then cMH(t') = gMH(x)MN(t), X =tiz1—ti. In

particular, .
C)\/@(tl) _ H CA/)‘(t,).

beA lo(x)
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Hypergeometric integrals

® The integrals c,’\/“(t) are complicated objects but their sums
AMe(t) = Do 1EA(N 1) C,’\/“(t) turn out to be much simpler.

Theorem (FSTV 2023)
Let t' =t — p — wt(\). Then cMH(t') = gMH(x)MANt), xj=tiy1— ti. In

particular, .
XD (4! ] l YO
Cc t) = Cc t).

® The hypergeometric integrals ¢*/? and ¢/*

invariants of X; More precisely,

are the putative enumerative
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Hypergeometric integrals
e The integral ¢*/?(t') is (up to a shift of variables) the vertex function. It

simplifies to
dsj
VA(E, k) = / (s, t)x [ 22
2l Sij
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Hypergeometric integrals

e The integral ¢*/?(t') is (up to a shift of variables) the vertex function. It

simplifies to
ds;
V,\(t',/i):/CDA(s t')x H J
2! Sioj

® The (properly normalized) integral c**(t') is the capping operator

I\(t'.K) :/d)A s, t') Hds,d
v
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Hypergeometric integrals

e The integral ¢*/?(t') is (up to a shift of variables) the vertex function. It

simplifies to
ds;
V,\(t',fi):/CD)\(s t')x H J
2! Sioj

® The (properly normalized) integral c**(t') is the capping operator

I\(t'.K) :/d),\ s, t') Hds,d
v

Thanks for your attention!
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