Hypergeometric integrals, hook formulas, and Whittaker vectors

Giovanni Felder, ETH Zurich

Hamburg, 10 November 2023

based on joint work with Andrey Smirnov, Vitaly Tarasov and Alexander Varchenko

Outline

1 [Variations on the hook length formula](#page-2-0)

2 [Equivariant Schubert calculus](#page-26-0)

3 [Whittaker vectors](#page-34-0)

4 [3d mirror symmetry and hypergeometric integrals](#page-47-0)

• Let $\lambda = (\lambda_1 \geq \cdots \geq \lambda_r \geq 0)$ be a partition of $N \in \mathbb{N}$. We also denote by λ the Young diagram of size $|\lambda| = N$ with rows of length λ_1 ..., λ_r .

The Young diagram $\lambda = (6, 4, 1)$

• Let $\lambda = (\lambda_1 \geq \cdots \geq \lambda_r \geq 0)$ be a partition of $N \in \mathbb{N}$. We also denote by λ the Young diagram of size $|\lambda| = N$ with rows of length λ_1 ..., λ_r .

The Young diagram $\lambda = (6, 4, 1)$

• The classical hook length formula relates the number of standard Young tableaux of shape λ to the product of lengths of hooks.

- A standard Young tableau of shape λ is a bijection $\lambda \to \{1, \ldots, N\}$ on the set of boxes which is increasing in both directions.
- It can be thought as a path $\emptyset \subset \lambda_1 \subset \cdots \subset \lambda_N = \lambda$ of Young diagtrams obtained from the empty diagram by adding one box at a time.

- A standard Young tableau of shape λ is a bijection $\lambda \to \{1, \ldots, N\}$ on the set of boxes which is increasing in both directions.
- It can be thought as a path $\emptyset \subset \lambda_1 \subset \cdots \subset \lambda_N = \lambda$ of Young diagtrams obtained from the empty diagram by adding one box at a time.

• The hook $H(b)$ of a box $b \in \lambda$ is the subset consisting of b and all boxes of λ above b and to its right. Its cardinality is the hook length ℓ_b .

Theorem

(Frame, Robinson, Thrall 1953) For any partition λ of N the number f^λ of Young tableaux of shape λ is

$$
f^{\lambda} = \frac{N!}{\prod_{b \in \lambda} \ell_b}.
$$

Theorem

(Frame, Robinson, Thrall 1953) For any partition λ of N the number f^λ of Young tableaux of shape λ is

$$
f^{\lambda} = \frac{N!}{\prod_{b \in \lambda} \ell_b}.
$$

• For example, \Box has a hook of length 3 and two hooks of length 1. It has thus $3!/3 \cdot 1 \cdot 1 = 2$ tableaux, namely

$$
\begin{array}{|c|c|}\n\hline\n2 & 3 \\
\hline\n1 & 3 & 12 \\
\hline\n\end{array}
$$

Theorem

(Frame, Robinson, Thrall 1953) For any partition λ of N the number f^λ of Young tableaux of shape λ is

$$
f^{\lambda} = \frac{N!}{\prod_{b \in \lambda} \ell_b}.
$$

• For example, \Box has a hook of length 3 and two hooks of length 1. It has thus $3!/3 \cdot 1 \cdot 1 = 2$ tableaux, namely

$$
\begin{array}{|c|c|}\n\hline\n2 & 3 \\
\hline\n1 & 3 & 12 \\
\hline\n\end{array}
$$

• f^{λ} is the dimension of the irreducible representation of S_N labeled by λ .

Hook length formula for skew diagrams

• A skew Young diagram λ/μ is a pair $\mu \subset \lambda$ consisting of a diagram and a subdiagram. The size of λ/μ is $N = |\lambda \setminus \mu|$.

Hook length formula for skew diagrams

- A skew Young diagram λ/μ is a pair $\mu \subset \lambda$ consisting of a diagram and a subdiagram. The size of λ/μ is $N = |\lambda \setminus \mu|$.
- A standard Young tableau of shape λ/μ is a bijection $\lambda \setminus \mu \to \{1, \ldots, N\}$ increasing in both direction.

Alternatively, it is a path $\mu = \mu_0 \subset \mu_1 \subset \cdots \subset \mu_N = \lambda$ of embedded Young diagrams from μ to λ such that $|\mu_i - \mu_{i-1}| = 1$.

Hook length formula for skew diagrams

- A skew Young diagram λ/μ is a pair $\mu \subset \lambda$ consisting of a diagram and a subdiagram. The size of λ/μ is $N = |\lambda \setminus \mu|$.
- A standard Young tableau of shape λ/μ is a bijection $\lambda \setminus \mu \rightarrow \{1, \ldots, N\}$ increasing in both direction.

Alternatively, it is a path $\mu = \mu_0 \subset \mu_1 \subset \cdots \subset \mu_N = \lambda$ of embedded Young diagrams from μ to λ such that $|\mu_i - \mu_{i-1}| = 1$.

• H. Naruse gave a subtraction free combinatorial formula for the number of standard Young tableaux of skew shape in terms of hook lengths of excited diagrams.

● To define this notion it is better to rotate Young diagrams by 45°.

- To define this notion it is better to rotate Young diagrams by 45°.
- Let ν be a subset of λ . A box of ν is called active if its upper left and upper right neighbours belong to λ but are not in ν .

- To define this notion it is better to rotate Young diagrams by 45°.
- Let ν be a subset of λ . A box of ν is called active if its upper left and upper right neighbours belong to λ but are not in ν .
- An elementary excitation (or ladder move) of a subset ν of a Young diagram λ is a subset obtained by moving one active box of ν up one step.

- To define this notion it is better to rotate Young diagrams by 45°.
- Let ν be a subset of λ . A box of ν is called active if its upper left and upper right neighbours belong to λ but are not in ν .
- An elementary excitation (or ladder move) of a subset ν of a Young diagram λ is a subset obtained by moving one active box of ν up one step.

Definition

(Kreiman 2005, Ikeda, Naruse 2009) An excited diagram of the skew diagram λ/μ is a subset of λ obtained from μ by a sequence of elementary excitations.

The skew diagram $\lambda/\mu = (6, 6, 5, 3, 1)/(3, 1)$ An excited diagram of λ/μ .

Naruse's hook length formula

Theorem (Naruse 2014)

Let λ/μ be a skew Young diagram of size $N = |\lambda - \mu|$. The number of standard Young tableaux of shape λ/μ is

$$
f^{\lambda/\mu} = \sum_{\nu \in E(\lambda/\mu)} \frac{N!}{\prod_{b \in \lambda \smallsetminus \nu} \ell_b}
$$

The summation is over the set of excited diagrams of λ/μ

Naruse's hook length formula

Theorem (Naruse 2014)

Let λ/μ be a skew Young diagram of size $N = |\lambda - \mu|$. The number of standard Young tableaux of shape λ/μ is

$$
f^{\lambda/\mu} = \sum_{\nu \in E(\lambda/\mu)} \frac{N!}{\prod_{b \in \lambda \smallsetminus \nu} \ell_b}
$$

The summation is over the set of excited diagrams of λ/μ

 \bullet It will be convenient to define the rational numbers $g^{\lambda/\mu}=f^{\lambda/\mu}/N!$. Then $g^{\lambda/\lambda}=1$ and since $E(\lambda/\varnothing)=\{\varnothing\}$ we recover the classical hook length formula

$$
g^{\lambda/\varnothing}=\frac{f^{\lambda/\varnothing}}{N!}=\frac{1}{\prod_{b\in\lambda}\ell_b}.
$$

Multivariate hook formulas

• These formulae are specialization at $x_1 = \cdots = x_{n-1} = 1$ of identities between rational functions in several "equivariant" variables.

Multivariate hook formulas

- These formulae are specialization at $x_1 = \cdots = x_{n-1} = 1$ of identities between rational functions in several "equivariant" variables.
- Let $I_{r,n-r}$ be the set of Young diagrams fitting in an $r \times (n-r)$ rectangle. Assign variables x_1, \ldots, x_{n-1} to boxes of $\lambda \in I_{r,n-r}$ from left to right, the same variable is assigned to boxes above each other. Let $x(b) \in \{x_1, \ldots, x_{n-1}\}\)$ be the variable assigned to $b \in \lambda$.

Multivariate hook formula

• The hook weight of $b \in \lambda$ is

$$
\ell_b(x) = \sum_{b' \in H(b)} x(b') = x_i + x_{i+1} + \dots + x_j.
$$

$$
\sum_{x_2} x_3 \times x_4 \times x_5 \times x_7
$$

$$
\sum_{x_2} x_4 \times x_5 \times x_6
$$

$$
\sum_{x_3} x_5 \times x_7 \times x_8
$$

Multivariate hook formula

• The hook weight of $b \in \lambda$ is

$$
\ell_b(x) = \sum_{b' \in H(b)} x(b') = x_i + x_{i+1} + \dots + x_j.
$$

$$
\sum_{x_2} x_3 \times x_4 \times x_5 \times x_7
$$

$$
\sum_{x_2} x_4 \times x_5 \times x_6
$$

$$
\sum_{x_3} x_5 \times x_4 \times x_5 \times x_6
$$

• The weight of a skew diagram λ/μ is

$$
w_{\lambda/\mu}(x) = \sum_{b \in \lambda \setminus \mu} x(b) = \sum k_i x_i
$$

where k_i is the number of boxes in $\lambda \times \mu$ labeled by x_i

. $11 / 26$

Naruse's multivariate hook formula

12 / 26

Theorem (Naruse 2014)

Let λ/μ be a skew diagram of size N.

$$
\sum_{\mu=\mu_0\subset \mu_1\subset \cdots \subset \mu_N=\lambda}\frac{1}{\prod_{i=1}^N w_{\lambda/\mu_i}(x)}=\sum_{\nu\in E(\lambda/\mu)}\frac{1}{\prod_{b\in \lambda\smallsetminus \nu}\ell_b(x)}
$$

The summation on the left is over standard Young tableaux of shape λ/μ , i.e., paths from μ to λ such that $|\mu_i - \mu_{i-1}| = 1$

Example

$$
\lambda = (2, 1), \ \mu = \varnothing.
$$
\n
$$
\frac{1}{(x_1 + x_2 + x_3)(x_1 + x_3)x_3} + \frac{1}{(x_1 + x_2 + x_3)(x_1 + x_3)x_1} = \frac{1}{x_1(x_1 + x_2 + x_3)x_3}.
$$

Reformulation: Pieri-type recurrence relation

We can reformulate this theorem by saying that the right-hand side of

$$
g^{\lambda/\mu}(x) = \sum_{\nu \in E(\lambda/\mu)} \frac{1}{\prod_{b \in \lambda \setminus \nu} \ell_b(x)}
$$

is the solution of the Pieri-type recurrence relation

$$
g^{\lambda/\mu}(x) = \frac{1}{w_{\lambda/\mu}(x)} \sum_{\mu' \to \mu} g^{\lambda/\mu'}(x),
$$

where the sum is over Young subdiagrams $\mu' \subset \lambda$ obtained for μ by adding one box, with initial condition

$$
g^{\lambda/\lambda}(x)=1.
$$

- Equivariant Schubert calculus. This is the context where the formulae were discovered.
- Whittaker vectors in tensor products of dual Verma modules with fundamental modules.
- Multidimensional hypergeometric functions and 3D mirror symmetry.

• The torus $\mathcal{T} = U(1)^n \subset U(n)$ acts on the Grassmannian $X = \mathsf{Gr}_r(\mathbb{C}^n)$ with isolated fixed points p_{λ} labeled by Young diagrams $\lambda \in I_{r,n-r}.$

- The torus $\mathcal{T} = U(1)^n \subset U(n)$ acts on the Grassmannian $X = \mathsf{Gr}_r(\mathbb{C}^n)$ with isolated fixed points p_{λ} labeled by Young diagrams $\lambda \in I_{r,n-r}.$
- The equivariant cohomology $H_T(X)$ of X is the free module over $H_T(pt) = \mathbb{Z}[t_1,\ldots,t_n]$ with basis the Schubert classes $[X_\lambda] = [\overline{B^-p_\lambda}]$.

- The torus $\mathcal{T} = U(1)^n \subset U(n)$ acts on the Grassmannian $X = \mathsf{Gr}_r(\mathbb{C}^n)$ with isolated fixed points p_{λ} labeled by Young diagrams $\lambda \in I_{r,n-r}.$
- The equivariant cohomology $H_T(X)$ of X is the free module over $H_T(pt) = \mathbb{Z}[t_1,\ldots,t_n]$ with basis the Schubert classes $[X_\lambda] = [\overline{B^-p_\lambda}]$.
- The inclusion maps i_{λ} : $\{p_{\lambda}\}\rightarrow X$ of fixed points define a monomorphism

$$
i^*: H_T(X) \to H_T(X^T) = \bigoplus_{p \in X} \tau \mathbb{Z}[t_1, \ldots, t_n]
$$

of graded algebras over $\mathbb{Z}[t_1,\ldots,t_n]$ with deg $t_i = 2$.

- The torus $\mathcal{T} = U(1)^n \subset U(n)$ acts on the Grassmannian $X = \mathsf{Gr}_r(\mathbb{C}^n)$ with isolated fixed points p_{λ} labeled by Young diagrams $\lambda \in I_{r,n-r}.$
- The equivariant cohomology $H_T(X)$ of X is the free module over $H_T(pt) = \mathbb{Z}[t_1,\ldots,t_n]$ with basis the Schubert classes $[X_\lambda] = [\overline{B^-p_\lambda}]$.
- The inclusion maps i_{λ} : $\{p_{\lambda}\}\rightarrow X$ of fixed points define a monomorphism

$$
i^*: H_T(X) \to H_T(X^T) = \bigoplus_{p \in X} \tau \mathbb{Z}[t_1, \ldots, t_n]
$$

of graded algebras over $\mathbb{Z}[t_1,\ldots,t_n]$ with deg $t_i = 2$.

Proposition (Okounkov 1996, Molev–Sagan 1999, Knutson–Tao 2003, Mihalcea 2005, Naruse 2014)

For all $\mu\subset\lambda\in I_{r,n-r},\ g^{\lambda/\mu}(x)=i_\mu^*[X_\lambda]/i_\lambda^*[X_\lambda],\ x_i=t_{i+1}-t_i$ solves the Pieri-type recurrence relation.

Proposition

For all $\mu\subset\lambda\in I_{r,n-r}$, $g^{\lambda/\mu}(x)=i_\mu^*[X_\lambda]/i_\lambda^*[X_\lambda]$, $x_i=t_{i+1}-t_i$ solves the Pieri-type recurrence relation.

Proposition

For all $\mu\subset\lambda\in I_{r,n-r}$, $g^{\lambda/\mu}(x)=i_\mu^*[X_\lambda]/i_\lambda^*[X_\lambda]$, $x_i=t_{i+1}-t_i$ solves the Pieri-type recurrence relation.

• The recurrence relation for $i_\mu^*[X_\lambda]=\mathcal{C}_{\lambda\mu}^\mu(t)$ follows from the Chevalley formula for equivariant Littlewood–Richardson coefficients.

Proposition

For all $\mu\subset\lambda\in I_{r,n-r}$, $g^{\lambda/\mu}(x)=i_\mu^*[X_\lambda]/i_\lambda^*[X_\lambda]$, $x_i=t_{i+1}-t_i$ solves the Pieri-type recurrence relation.

- The recurrence relation for $i_\mu^*[X_\lambda]=\mathcal{C}_{\lambda\mu}^\mu(t)$ follows from the Chevalley formula for equivariant Littlewood–Richardson coefficients.
- On the other hand one has the AJS/Billey formula for $i^*_\mu[X_\lambda]$ (Andersen–Jantzen–Soergel 1994, Billey 1999, Kumar 2002), which can be recast into a sum over excited diagrams.

Proposition

For all $\mu\subset\lambda\in I_{r,n-r}$, $g^{\lambda/\mu}(x)=i_\mu^*[X_\lambda]/i_\lambda^*[X_\lambda]$, $x_i=t_{i+1}-t_i$ solves the Pieri-type recurrence relation.

- The recurrence relation for $i_\mu^*[X_\lambda]=\mathcal{C}_{\lambda\mu}^\mu(t)$ follows from the Chevalley formula for equivariant Littlewood–Richardson coefficients.
- On the other hand one has the AJS/Billey formula for $i^*_\mu[X_\lambda]$ (Andersen–Jantzen–Soergel 1994, Billey 1999, Kumar 2002), which can be recast into a sum over excited diagrams.
- This generalizes to generalized flag manifolds G/P and to equivariant K-theory and their quantum version.

• Let $\mathfrak{n}^- \subset \mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$ be the maximal nilpotent of lower triangular matrices. It is generated by $f_i = E_{i+1,i}$, $(i = 1, \ldots, n-1)$. Let $\eta \colon \mathfrak{n}^- \to \mathbb{C}$ be the character such that $\eta(f_i) = -1$ for all *i*.

- Let $\mathfrak{n}^- \subset \mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$ be the maximal nilpotent of lower triangular matrices. It is generated by $f_i = E_{i+1,i}$, $(i = 1, \ldots, n-1)$. Let $\eta \colon \mathfrak{n}^- \to \mathbb{C}$ be the character such that $\eta(f_i) = -1$ for all *i*.
- A Whittaker vector (for the character η) in a g-module V is a vector $v \in V$ such that

$$
xv = \eta(x)v \quad \text{ for all } x \in \mathfrak{n}^-.
$$

- Let $\mathfrak{n}^- \subset \mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$ be the maximal nilpotent of lower triangular matrices. It is generated by $f_i = E_{i+1,i}$, $(i = 1, \ldots, n-1)$. Let $\eta \colon \mathfrak{n}^- \to \mathbb{C}$ be the character such that $\eta(f_i) = -1$ for all *i*.
- A Whittaker vector (for the character n) in a g-module V is a vector $v \in V$ such that

$$
xv = \eta(x)v \quad \text{ for all } x \in \mathfrak{n}^-.
$$

• The space $Wh(V)$ of Whittaker vectors in V is a module over the centre $Z = Z(U\mathfrak{g})$ of the universal enveloping algebra of g.

- Let $\mathfrak{n}^- \subset \mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$ be the maximal nilpotent of lower triangular matrices. It is generated by $f_i = E_{i+1,i}$, $(i = 1, \ldots, n-1)$. Let $\eta \colon \mathfrak{n}^- \to \mathbb{C}$ be the character such that $\eta(f_i) = -1$ for all *i*.
- A Whittaker vector (for the character n) in a g-module V is a vector $v \in V$ such that

$$
xv = \eta(x)v \quad \text{ for all } x \in \mathfrak{n}^-.
$$

- The space $Wh(V)$ of Whittaker vectors in V is a module over the centre $Z = Z(U\mathfrak{g})$ of the universal enveloping algebra of g.
- If $v \in Wh(V) \setminus \{0\}$ and $zv = \chi(z)v$ for all $z \in Z$ for some character $\chi: Z \to \mathbb{C}$ of the commutative algebra Z, then one says that v has infinitesimal character χ .

• Let $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ be the Gauss decomposition, $\rho \in \mathfrak{h}^*$ the half-sum of positive roots.

- Let $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ be the Gauss decomposition, $\rho \in \mathfrak{h}^*$ the half-sum of positive roots.
- The Verma module M_t of highest weight $t \in \mathfrak{h}^* \cong \mathbb{C}^n$ is generated by a vector v_t of weight t killed by \mathfrak{n}^+ and is free over $U(\mathfrak{n}^-).$

- Let $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ be the Gauss decomposition, $\rho \in \mathfrak{h}^*$ the half-sum of positive roots.
- The Verma module M_t of highest weight $t \in \mathfrak{h}^* \cong \mathbb{C}^n$ is generated by a vector v_t of weight t killed by \mathfrak{n}^+ and is free over $U(\mathfrak{n}^-).$

Lemma

The space of Whittaker vectors in the dual module $M'_{t-\rho} = \mathsf{Hom}_\mathbb{C}(M_{t-\rho}, \mathbb{C})$ is 1-dimensional, spanned by ψ such that

$$
\psi(f_{i_1}\cdots f_{i_k}v_{t-\rho})=1 \quad \text{for all } 1\leq i_1,\ldots, i_k\leq n-1.
$$

- Let $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$ be the Gauss decomposition, $\rho \in \mathfrak{h}^*$ the half-sum of positive roots.
- The Verma module M_t of highest weight $t \in \mathfrak{h}^* \cong \mathbb{C}^n$ is generated by a vector v_t of weight t killed by \mathfrak{n}^+ and is free over $U(\mathfrak{n}^-).$

Lemma

The space of Whittaker vectors in the dual module $M'_{t-\rho} = \mathsf{Hom}_\mathbb{C}(M_{t-\rho}, \mathbb{C})$ is 1-dimensional, spanned by ψ such that

 $\psi(f_{i_1}\cdots f_{i_k}v_{t-\rho})=1$ for all $1\leq i_1,\ldots,i_k\leq n-1$.

 \bullet The centre Z acts on $M'_{t-\rho}$ via a character $\chi(t)\colon Z\to \mathbb{C}.$ In particular ψ has infinitesimal character $\chi(t)$.

• Let $U_r = \bigwedge^r \mathbb{C}^n$ be the r-th fundamental module of $\mathfrak{g} = \mathfrak{gl}_n$, $(r = 1, \ldots, n-1)$. It has a basis $u_\mu=e_{i_1}\wedge\dots\wedge e_{i_r}$ in 1-1 correspondence with Young diagrams $\mu\in I_{r,n}$ fitting in a $r \times (n-r)$ -rectangle. Let wt $(\mu) \in \mathfrak{h}^*$ denote the weight of $u_\mu.$

- Let $U_r = \bigwedge^r \mathbb{C}^n$ be the r-th fundamental module of $\mathfrak{g} = \mathfrak{gl}_n$, $(r = 1, \ldots, n-1)$. It has a basis $u_\mu=e_{i_1}\wedge\dots\wedge e_{i_r}$ in 1-1 correspondence with Young diagrams $\mu\in I_{r,n}$ fitting in a $r \times (n-r)$ -rectangle. Let wt $(\mu) \in \mathfrak{h}^*$ denote the weight of $u_\mu.$
- Example: $r = 3$, $n = 8$, $u_{\mu} = e_4 \wedge e_6 \wedge e_8$, wt $(\mu) = (0, 0, 0, 1, 0, 1, 0, 1)$.

- Let $U_r = \bigwedge^r \mathbb{C}^n$ be the r-th fundamental module of $\mathfrak{g} = \mathfrak{gl}_n$, $(r = 1, \ldots, n-1)$. It has a basis $u_\mu=e_{i_1}\wedge\dots\wedge e_{i_r}$ in 1-1 correspondence with Young diagrams $\mu\in I_{r,n}$ fitting in a $r \times (n-r)$ -rectangle. Let wt $(\mu) \in \mathfrak{h}^*$ denote the weight of $u_\mu.$
- Example: $r = 3$, $n = 8$, $u_{\mu} = e_4 \wedge e_6 \wedge e_8$, wt $(\mu) = (0, 0, 0, 1, 0, 1, 0, 1)$.

 \bullet It follows from results of Kostant that $\mathsf{Wh}(M'_{t-\rho}\otimes U_r)$ has dimension $\dim(U_r) = \binom{n}{r}$ $\binom{n}{r}$. How does the centre Z act?

Theorem (FSTV 2023)

Let $t \in \mathfrak{h}^*$ be generic and let $x_i = t_{i+1} - t_i$ $(i = 1, \ldots, n-1)$. For $\lambda \in I_{r,n-r}$ there is a unique Whittaker vector $\beta_\lambda\in M'_{t-\rho}\otimes U_r\cong\mathsf{Hom}_\mathbb{C}(M_{t-\rho},U_r)$ such that

$$
\beta_{\lambda}(v_{t-\rho})=\sum_{\mu\subset \lambda}g^{\lambda/\mu}(t)u_{\mu},\quad g^{\lambda/\mu}(t)=\sum_{\nu\in E(\lambda/\mu)}\frac{1}{\prod_{b\in \lambda\smallsetminus \nu}\ell_b(x)},
$$

It is a simultaneaous eigenvector for the action of Z with infinitesimal character $\chi(t - \text{wt}(\lambda))$. The vectors β_{λ} form a basis of the space of Whittaker vectors.

Theorem (FSTV 2023)

Let $t \in \mathfrak{h}^*$ be generic and let $x_i = t_{i+1} - t_i$ $(i = 1, \ldots, n-1)$. For $\lambda \in I_{r,n-r}$ there is a unique Whittaker vector $\beta_\lambda\in M'_{t-\rho}\otimes U_r\cong\mathsf{Hom}_\mathbb{C}(M_{t-\rho},U_r)$ such that

$$
\beta_\lambda(\nu_{t-\rho})=\sum_{\mu\subset \lambda} g^{\lambda/\mu}(t)u_\mu, \quad g^{\lambda/\mu}(t)=\sum_{\nu\in E(\lambda/\mu)} \frac{1}{\prod_{b\in \lambda\smallsetminus \nu}\ell_b({\sf x})},
$$

It is a simultaneaous eigenvector for the action of Z with infinitesimal character $\chi(t - \text{wt}(\lambda))$. The vectors β_{λ} form a basis of the space of Whittaker vectors.

• Sketch of proof The condition for β to be a Whittaker vector with an infinitesimal character can be translated into the Pieri-type recurrence relation for $g^{\lambda/\mu}(x)$

• To a Nakajima quiver variety X one associates hypergeometric integrals called vertex function $V(X)$ and capping operator $I(X)$ predicting by 3d mirror symmetry to encode the enumerative geometry of quasi-maps (with different boundary conditions) from \mathbb{P}^1 to the 3d mirror dual $X^!$. (Okounkov 2015, Aganagic–Okounkov 2017)

- To a Nakajima quiver variety X one associates hypergeometric integrals called vertex function $V(X)$ and capping operator $I(X)$ predicting by 3d mirror symmetry to encode the enumerative geometry of quasi-maps (with different boundary conditions) from \mathbb{P}^1 to the 3d mirror dual $X^!$. (Okounkov 2015, Aganagic–Okounkov 2017)
- To a Young diagram λ one associates a quiver and a (0-dimensional) Nakajima variety $X_{\lambda}=\,T^*Rep_{\mathsf{v},\mathsf{w}}/\!//\mathsf{G}_\mathsf{v}=\mu^{-1}(0)/\mathsf{/G}_\mathsf{v}.$

• Thus we have a vertex function V_{λ} and a capping operator I_{λ} . Since the cohomology of X_{λ} is one-dimensional one expect them to be proportional.

• Thus we have a vertex function V_{λ} and a capping operator I_{λ} . Since the cohomology of X_{λ} is one-dimensional one expect them to be proportional.

Theorem (FSTV 2003) $V_\lambda(z,\kappa) = \frac{1}{\prod_{b\in\lambda}(\ell_b(z)+1)}I_\lambda(z,\kappa).$

• Thus we have a vertex function V_{λ} and a capping operator I_{λ} . Since the cohomology of X_{λ} is one-dimensional one expect them to be proportional.

Theorem (FSTV 2003)

$$
V_\lambda(z,\kappa)=\frac{1}{\prod_{b\in\lambda}(\ell_b(z)+1)}I_\lambda(z,\kappa).
$$

• These hypergeometric integrals first appeared in the study of solutions of the Knizhnik–Zamolodchikov equation.

• The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov (Schechtman–Varchenko 1991) provides in particular integral formulas for singular vectors in $M_t \otimes U_r$.

- The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov (Schechtman–Varchenko 1991) provides in particular integral formulas for singular vectors in $M_t \otimes U_r$.
- For generic $t \in \mathfrak{h}^*$ and $\lambda \in I_{r,n-r}$ there is a singular vector, unique up to normalization, of the form

$$
\chi_{\lambda} = \sum_{\mu \leq \lambda} \sum_{l \in A(\lambda/\mu)} c_l^{\lambda/\mu}(t) f_{i_1} \cdots f_{i_k} v_t \otimes u_{\mu}, \quad c_{\varnothing}^{\lambda/\lambda} \neq 0.
$$

The sum is over $I = (i_1, \ldots, i_k)$ such that $wt(\mu) = wt(\lambda) + \alpha_{i_1} + \cdots + \alpha_{i_k}$

- The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov (Schechtman–Varchenko 1991) provides in particular integral formulas for singular vectors in $M_t \otimes U_r$.
- For generic $t \in \mathfrak{h}^*$ and $\lambda \in I_{r,n-r}$ there is a singular vector, unique up to normalization, of the form

$$
\chi_{\lambda} = \sum_{\mu \leq \lambda} \sum_{I \in A(\lambda/\mu)} c_I^{\lambda/\mu}(t) f_{i_1} \cdots f_{i_k} v_t \otimes u_{\mu}, \quad c_{\varnothing}^{\lambda/\lambda} \neq 0.
$$

The sum is over $I = (i_1, \ldots, i_k)$ such that $wt(\mu) = wt(\lambda) + \alpha_{i_1} + \cdots + \alpha_{i_k}$

• Pick any generic $\kappa \in \mathbb{C}$. The coefficients are hypergeometric integrals of the form

$$
c_l^{\lambda/\mu}(t)=\int_{\gamma}\Phi_{\lambda}(s,t)^{\frac{1}{\kappa}}W_l(s)\prod ds_{i,j}
$$

• The coefficients are hypergeometric integrals of the form

$$
c_l^{\lambda/\mu}(t)=\int_{\gamma}\Phi_{\lambda}(s,t)^{\frac{1}{\kappa}}W_l(s)\prod ds_{i,j}
$$

• The coefficients are hypergeometric integrals of the form

$$
c_l^{\lambda/\mu}(t)=\int_{\gamma}\Phi_{\lambda}(s,t)^{\frac{1}{\kappa}}W_l(s)\prod ds_{i,j}
$$

• Let wt $(\lambda)=\varpi_r-\sum_{i=1}^{n-1}k_i\alpha_i$ Then we have k_i integration variables $s_{i,j}$ $(j = 1, \ldots, k_i)$ associated with the simple root α_i (one integration variable for each box of λ). Let $k=\sum_{k_i}=|\lambda|.$ The master function is

$$
\Phi_{\lambda}(s,t)=\prod_{(i,j)}s_{i,j}^{-(\alpha_i,t)}(s_{i,j}-1)^{-(\alpha_i,\varpi_r)}\prod_{(i,j)<(i',j')}(s_{i,j}-s_{i',j'})^{(\alpha_i,\alpha_{i'})}
$$

• The coefficients are hypergeometric integrals of the form

$$
c_l^{\lambda/\mu}(t)=\int_{\gamma}\Phi_{\lambda}(s,t)^{\frac{1}{\kappa}}W_l(s)\prod ds_{i,j}
$$

• Let wt $(\lambda)=\varpi_r-\sum_{i=1}^{n-1}k_i\alpha_i$ Then we have k_i integration variables $s_{i,j}$ $(i = 1, ..., k_i)$ associated with the simple root α_i (one integration variable for each box of λ). Let $k=\sum_{k_i}=|\lambda|.$ The master function is

$$
\Phi_{\lambda}(s,t) = \prod_{(i,j)} s_{i,j}^{-(\alpha_i,t)}(s_{i,j}-1)^{-(\alpha_i,\varpi_r)} \prod_{(i,j)<(i',j')} (s_{i,j}-s_{i',j'})^{(\alpha_i,\alpha_{i'})}
$$

• The weight functions $W_I(s)$ are certain rational functions and $\gamma \in H_k(C, L_{\kappa})^{-1}$ is a $\prod_{i=1} S_{k_i}$ -antiinvariant cycle with coefficients in the local system on a complement of hyperplanes in \mathbb{C}^k defined by the many-valued function $\Phi_\lambda^{1/\kappa}.$

• The integrals $c_l^{\lambda/\mu}$ $\int_{I}^{\gamma/\mu}(t)$ are complicated objects but their sums $c^{\lambda/\mu}(t)=\sum_{I\in A(\lambda/\mu)}c^{\lambda/\mu}_I$ $\int_{I}^{\gamma/\mu}(t)$ turn out to be much simpler.

• The integrals $c_l^{\lambda/\mu}$ $\int_{I}^{\gamma/\mu}(t)$ are complicated objects but their sums $c^{\lambda/\mu}(t)=\sum_{I\in A(\lambda/\mu)}c^{\lambda/\mu}_I$ $\int_{I}^{\gamma/\mu}(t)$ turn out to be much simpler.

Theorem (FSTV 2023)

Let $t'=t-\rho-\mathsf{wt}(\lambda)$. Then $c^{\lambda/\mu}(t')=g^{\lambda/\mu}(x)c^{\lambda/\lambda}(t'),\quad x_i=t_{i+1}-t_i.$ In particular,

$$
c^{\lambda/\varnothing}(t')=\prod_{b\in\lambda}\frac{1}{\ell_b(x)}c^{\lambda/\lambda}(t').
$$

• The integrals $c_l^{\lambda/\mu}$ $\int_{I}^{\gamma/\mu}(t)$ are complicated objects but their sums $c^{\lambda/\mu}(t)=\sum_{I\in A(\lambda/\mu)}c^{\lambda/\mu}_I$ $\int_{I}^{\gamma/\mu}(t)$ turn out to be much simpler.

Theorem (FSTV 2023)

Let $t'=t-\rho-\mathsf{wt}(\lambda)$. Then $c^{\lambda/\mu}(t')=g^{\lambda/\mu}(x)c^{\lambda/\lambda}(t'),\quad x_i=t_{i+1}-t_i.$ In particular,

$$
c^{\lambda/\varnothing}(t')=\prod_{b\in\lambda}\frac{1}{\ell_b(x)}c^{\lambda/\lambda}(t').
$$

• The hypergeometric integrals $c^{\lambda/\varnothing}$ and $c^{\lambda/\lambda}$ are the putative enumerative invariants of $X_{\lambda}^!$ More precisely,

• The integral $c^{\lambda/\varnothing}(t')$ is (up to a shift of variables) the vertex function. It simplifies to

$$
V_{\lambda}(t',\kappa)=\int_{\gamma}\Phi_{\lambda}(s,t')^{\frac{1}{\kappa}}\prod\frac{ds_{i,j}}{s_{i,j}}
$$

• The integral $c^{\lambda/\varnothing}(t')$ is (up to a shift of variables) the vertex function. It simplifies to

$$
V_{\lambda}(t',\kappa)=\int_{\gamma}\Phi_{\lambda}(s,t')^{\frac{1}{\kappa}}\prod\frac{ds_{i,j}}{s_{i,j}}
$$

• The (properly normalized) integral $c^{\lambda/\lambda}(t')$ is the capping operator

$$
I_{\lambda}(t'.\kappa)=\int_{\gamma}\Phi_{\lambda}(s,t')^{\frac{1}{\kappa}}W_{\varnothing}(s)\prod ds_{i,j}.
$$

• The integral $c^{\lambda/\varnothing}(t')$ is (up to a shift of variables) the vertex function. It simplifies to

$$
V_{\lambda}(t',\kappa)=\int_{\gamma}\Phi_{\lambda}(s,t')^{\frac{1}{\kappa}}\prod\frac{ds_{i,j}}{s_{i,j}}
$$

• The (properly normalized) integral $c^{\lambda/\lambda}(t')$ is the capping operator

$$
I_{\lambda}(t'.\kappa)=\int_{\gamma}\Phi_{\lambda}(s,t')^{\frac{1}{\kappa}}W_{\varnothing}(s)\prod ds_{i,j}.
$$

Thanks for your attention!