
 
Z/2 Laplacian on S2 talk 

 
• The setting is the round 2-sphere in R3.   

a) Standard Laplacian Δ = 1
sinθ ∂θ(sinθ∂θ) + 1

sin2θ ∂ϕ
2 . 

b) Eigenvalues of -Δ are {n (n +1): n ∈ 0, 1, 2, …}; multiplicities 2n + 1. 
c) Eigenvectors are spherical harmonics (restriction to S2 of Aij···n xixj···xn where A is 

completely symmetric and trace zero on any two indices). 
d) The eigenvectors form a complete, orthonormal basis (with respect to the inner 

product (ƒ, g) → ƒg
S2
∫  ) for the space of square integrable functions on S2. 

e) An exemplar of standard lore about -Δ + V with V being a potential function:  
The ground state (the constant function) is unique up to scalar multiplication.  

f) Eigenvectors are critical points of the energy function  

ƒ → 〈dƒ,dƒ〉
S2
∫   

subject to the constraint that ƒ2
S2
∫  = 1.   

g) The eigenvalues are the critical points.  This is the Raleigh-Ritz characterization 
of eigenvectors and eigenvalues. 

 
• Now consider the following set up (joint work with Therese Wu): 

a) Fix a configuration p = {p1, …, p2n} of 2n points on the sphere (the space of 2n 
distinct, unordered points is denoted by C2n). 

b) There is a real line bundle I → S2−p with monodromy -1 around each point.  
(This is why I need an even number of points.) 

c) Locally, on any given disk D ⊂ S2−p, a section, ƒ, is just a function.  So we know 
what dƒ and Δƒ are. 

d) Can define a Hilbert space of sections by completing the space of sections of I 
with compact support in S2−p using the inner product from the norm whose 
square is the function  

 
ƒ → Ep(ƒ) ≡ 〈dƒ,dƒ〉

S2
∫ .    

I will call this Hilbert space Hp. 
e) I then define a eigensection to be a critical point of this function subject to the 

constraint that the integral of ƒ2 is equal to 1. 
f) These eigensections obey -Δƒ = E ƒ where E is the value of E at its critical point. 
g) Eigensections are smooth in the complement of p and have the form 



ƒ ∼  Re(ap z
np+1/2 ) + O( | z |np+3/2 ) 

near each p ∈ p when written using Gaussian coordinates near the point.   Here, np 
is a non-negative integer and ap ∈ C−0.  The integer np is the degree of ƒ at that 
point. 

j) The eigenvalues of Ep are discrete, with no accumulation points.  Moreover, there 
is a complete, basis for Hp consisting of eigensections. 

 
• We can look for a minimum for Ep  on the ƒ2

S2
∫  = 1 sphere in Hp.  This is a function 

on the configuration space C2n of n points in S2.  What can one say about this function 
(call it Ep) and the corresponding eigensection ƒp (as a function of p).  More generally, 
what about the second eigenvalue?  Or k’th? 
a) First, Ep is always positive because I doesn’t have constant sections. 
b) inf C Ep = 0 and this is realized by taking the p points in an ever smaller radius disk 

so that in the limit they coincide (eigenvalues and eigensections are continuous 
with respect to colliding points if you count multiplicity mod(2):  Throw away 
even number collisions and count odd number ones as a single point). 

c) c n ≥ supC Ep ≥ c−1 n . 
d) Critical points of Ep:  The function Ep is smooth where it has multiplicity 1 as an 

eigenvalue of -Δ, but it isn’t smooth where it has multiplicity > 1.  Moreover, Ep at 
its maximum (which is achieved) has multiplicity > 1 so it isn’t smooth there; and 
infact, dEp is (technically) never zero. 

 
• What does this mean?  A better way to think about this:  One would like to consider 

the set of pairs {(p, Hp): p ∈ C2n} as defining a Hilbert space bundle H → C2n and then 
the assignment (p, ƒ) → Ep(ƒ) defines a differentiable function on the unit sphere 
bundle.  We would be looking for its critical points.  Except: 
a) There is no Hilbert space bundle.  This is a very simple example of an anomaly.  
b) The anomaly here is due to the following fact:  One can define a universal 

punctured sphere fiber bundle S → C2n whose fiber over p is S2−p.  Sitting over 
each fiber S2−p is the corresponding line bundle Ip.  There is no universal line 
bundle I → S whose restriction to any given fiber is this Ip. 

 
• You can define an RP∞ bundle RP → C2n whose fiber at p is the quotient of the unit 

sphere in Hp by R*.  The function (p, [±ƒ]) → Ep comes from there.  
a) A pair (p, ƒ) is a critical point if and only if ƒ is an eigensection that vanishes as 

Re(ap z3/2) or faster at each p ∈ p.  (Generic vanishing is Re(apz1/2). 



b) At a critical value, the corresponding eigenvalue can’t be the lowest Ip eigenvalue, 
there must be at least n smaller eigenvalues.  (Which is a technically correct way 
to say that the lowest eigenvalue function p → Ep has no critical points.) 

c) Actually, there might not be any critical values because C2n is not compact.   
d) But there is a compactification to which RP and E extend C2n = C2n ∪ C2n-2 ··· ∪ C0  

where lower strata just count a multiplicity k divisor as k (mod 2) (either as 0 or 1). 
 

• You can see this almost explicitly in the case when n = 1 (so 2 points on S2).  
a) Configuration space compactifies as the Thom space of the tangent space to RP2. 
b) Eigenvalues when the points come together are m(m+1) with multiplicity 2m+1. 
c) Eigenvalues when point are antipodal:  m2 - 14  with m = 1, 2, … and multiplicity 

2m. 
d) The antipodal cases with m = 2, … comprise the set of critical points of E on the 

bundle RP → C2. 
d) The respective eigenvalues for the points colliding and antipodal are interleaved.  

As you bring the points together, half of the eigenvalues go down and half go up. 
e) Which half go up and which half go down?  This depends on the arc you take the 

points together on! 
f) Interesting representation of Sl(2; C) here. 

 
• A simpler example:  Z/2 harmonic functions for C2 on [-1, 1] × S1. 

 
 


