Z/2 Laplacian on S² **talk**

- The setting is the round 2-sphere in \mathbb{R}^3 .
	- a) Standard Laplacian $\Delta = \frac{1}{\sin \theta} \partial_{\theta} (\sin \theta \partial_{\theta}) + \frac{1}{\sin^2 \theta} \partial_{\phi}^2$.
	- b) Eigenvalues of $-\Delta$ are $\{n(n+1): n \in \{0, 1, 2, ...\}$; multiplicities $2n+1$.
	- c) Eigenvectors are spherical harmonics (restriction to S² of $A_{ij\cdots n}x_ix_j\cdots x_n$ where A is completely symmetric and trace zero on any two indices).
	- d) The eigenvectors form a complete, orthonormal basis (with respect to the inner product $(f, g) \rightarrow \int f g$ $\int_{S^2} fg$) for the space of square integrable functions on S^2 .
	- e) An exemplar of standard lore about $-\Delta + V$ with V being a potential function: The ground state (the constant function) is unique up to scalar multiplication.
	- f) Eigenvectors are critical points of the energy function

$$
f \to \int_{S^2} \langle df, df \rangle
$$

$$
f^2 = 1
$$

subject to the constraint that $\int f^2$ $\int_{S^2} f^2 = 1.$

- g) The eigenvalues are the critical points. This is the Raleigh-Ritz characterization of eigenvectors and eigenvalues.
- Now consider the following set up (joint work with Therese Wu):
	- a) Fix a configuration $p = \{p_1, ..., p_{2n}\}\$ of 2n points on the sphere (the space of 2n distinct, unordered points is denoted by C_{2n}).
	- b) There is a real line bundle $1 \rightarrow S^2$ -p with monodromy -1 around each point. (This is why I need an even number of points.)
	- c) Locally, on any given disk $D \subset S^2 \mathfrak{p}$, a section, f, is just a function. So we know what df and Δf are.
	- d) Can define a Hilbert space of sections by completing the space of sections of *I* with compact support in S^2 -p using the inner product from the norm whose square is the function

$$
f \to \mathcal{E}_{\mathfrak{p}}(f) \equiv \int_{S^2} \langle df, df \rangle.
$$

I will call this Hilbert space \mathbb{H}_{n} .

- e) I then define a eigensection to be a critical point of this function subject to the constraint that the integral of f^2 is equal to 1.
- f) These eigensections obey $-\Delta f = E f$ where E is the value of $\mathcal E$ at its critical point.
- g) Eigensections are smooth in the complement of p and have the form

$$
f \sim \text{Re}(a_p z^{n_p + 1/2}) + \mathcal{O}(|z|^{n_p + 3/2})
$$

near each $p \in \mathfrak{p}$ when written using Gaussian coordinates near the point. Here, n_p is a non-negative integer and $a_p \in \mathbb{C}$ −0. The integer n_p is the degree of f at that point.

- j) The eigenvalues of \mathcal{E}_p are discrete, with no accumulation points. Moreover, there is a complete, basis for \mathbb{H}_{p} consisting of eigensections.
- We can look for a minimum for $\mathcal{E}_{\mathfrak{p}}$ on the $\int f^2$ $\int_{S^2} f^2 = 1$ sphere in \mathbb{H}_p . This is a function on the configuration space C_{2n} of n points in S^2 . What can one say about this function

(call it E_p) and the corresponding eigensection f_p (as a function of p). More generally, what about the second eigenvalue? Or k'th?

- a) First, E_p is always positive because 1 doesn't have constant sections.
- b) inf $\mathcal{C} E_p = 0$ and this is realized by taking the p points in an ever smaller radius disk so that in the limit they coincide (eigenvalues and eigensections are continuous with respect to colliding points if you count multiplicity mod(2): Throw away even number collisions and count odd number ones as a single point).
- c) $cn \ge \sup_{C} E_p \ge c^{-1} n$.
- d) Critical points of E_p : The function E_p is smooth where it has multiplicity 1 as an eigenvalue of $-\Delta$, but it isn't smooth where it has multiplicity > 1 . Moreover, E_n at its maximum (which is achieved) has multiplicity > 1 so it isn't smooth there; and infact, dE_p is (technically) never zero.
- What does this mean? A better way to think about this: One would like to consider the set of pairs $\{(\mathfrak{p}, \mathbb{H}_{\mathfrak{p}}): \mathfrak{p} \in C_{2n}\}$ as defining a Hilbert space bundle $\mathbb{H} \to C_{2n}$ and then the assignment $(\mathfrak{p}, f) \to \mathcal{E}_{\mathfrak{p}}(f)$ defines a differentiable function on the unit sphere bundle. We would be looking for its critical points. Except:
	- a) There is no Hilbert space bundle. This is a very simple example of an anomaly.
	- b) The anomaly here is due to the following fact: One can define a universal punctured sphere fiber bundle $S \to C_{2n}$ whose fiber over p is $S^2 - \mathfrak{p}$. Sitting over each fiber S^2 - $\mathfrak p$ is the corresponding line bundle $\mathfrak I_{\mathfrak p}$. There is no universal line bundle $\mathbb{I} \to S$ whose restriction to any given fiber is this \mathcal{I}_p .
- You can define an \mathbb{RP}^{∞} bundle $\mathbb{RP} \to C_{2n}$ whose fiber at p is the quotient of the unit sphere in \mathbb{H}_p by \mathbb{R}^* . The function $(\mathfrak{p}, [\pm f]) \to \mathcal{E}_p$ comes from there.
	- a) A pair (\mathfrak{p}, f) is a critical point if and only if f is an eigensection that vanishes as $\text{Re}(a_p z^{3/2})$ or faster at each $p \in \mathfrak{p}$. (Generic vanishing is $\text{Re}(a_p z^{1/2})$.
- b) At a critical value, the corresponding eigenvalue can't be the lowest I_p eigenvalue, there must be at least n smaller eigenvalues. (Which is a technically correct way to say that the lowest eigenvalue function $\mathfrak{p} \to E_p$ has no critical points.)
- c) Actually, there might not be any critical values because C_{2n} is not compact.
- d) But there is a compactification to which \mathbb{RP} and $\mathcal E$ extend $\underline{C}_{2n} = C_{2n} \cup C_{2n-2} \cdots \cup C_0$ where lower strata just count a multiplicity k divisor as k (mod 2) (either as 0 or 1).
- You can see this almost explicitly in the case when $n = 1$ (so 2 points on S^2).
	- a) Configuration space compactifies as the Thom space of the tangent space to \mathbb{RP}^2 .
	- b) Eigenvalues when the points come together are $m(m+1)$ with multiplicity $2m+1$.
	- c) Eigenvalues when point are antipodal: $m^2 \frac{1}{4}$ with $m = 1, 2, ...$ and multiplicity 2m.
	- d) The antipodal cases with $m = 2, \ldots$ comprise the set of critical points of $\mathcal E$ on the bundle $\mathbb{RP} \to \mathcal{C}_2$.
	- d) The respective eigenvalues for the points colliding and antipodal are interleaved. As you bring the points together, half of the eigenvalues go down and half go up.
	- e) Which half go up and which half go down? This depends on the arc you take the points together on!
	- f) Interesting representation of $Sl(2; \mathbb{C})$ here.
- A simpler example: $\mathbb{Z}/2$ harmonic functions for C_2 on $[-1, 1] \times S^1$.