
Summary of centre questionaires and seminar series

Kilian Schwarz, Yves Kemp DMA ST1 synergy workshop DESY 8.11.2023

What is ST1 about? ... the full data lifecycle: workflows, infrastructure, tools

DESY. Page 2

DMA ST1 milestones

Milestone		Subtopic	Year
DMA-4	Organization of a workshop that defines and strengthens synergies in data lifecycle management among the participating facilities and communities	ST1 Autumn 2	2022 2 023
DMA-5	Review and gap analysis of existing common tools for implementing a data lifecycle management system in a distributed computing environment that respects FAIR principles	ST1	2024
DMA-6	Review of and documentation of "lessons learned" from the implementation of a generic prototype of a data lifecycle management system in a distributed computing environment that respects FAIR principles	ST1	2027

Analysis of full data lifecycle

- Identified several steps:
 - Actions on raw data (reduction, reconstruction, visualization, transfer and storage, ...)
 - Actions on simulated data (reconstruction, transfer and storage, ...)
 - Offline analysis (data discovery, accessibility, analysis, reusability, ...)
- Identified several actors:
 - Centers, facilities
 - Individual scientists, experiments, collaborations, communities
- Identified possible tools

DESY. Page 4

Preparation for the first milestone: Two-fold

- Learn what tools are available, what these tools can offer, ...
 - → Seminar series
- Learn what tools communities use, want, are missing, ...
 - → Questionaire

Seminar series: In general:

- Out of the previous items, have created seminar series. So far:
- Storage and data management solutions
- Meta-Data handling
- Log-Books
- Data acquisition
- Call for volunteers for further seminars!

- Opened seminar beyond DMA/ST1
- → Announced to all of DMA, well attended

DESY. Page 6

(some) topics discussed for seminar

Need to chose topics well:

- Not too basic, fabric topics
 - e.g. Linux distros, cluster file systems
- Not "too much physics" or community specific
 - e.g. monte carlo simulators
- Related to full data lifecycle
 - Online analysis, reconstruction, data reduction, data movement
 - Offline analysis, portals
 - Metadata and logbook,

We want your feedback!

DESY. Page 7

Questionaire: Idea: Get input from ST1 sites about their communities

Center & Community:		
Step	Tools	Competences
Proposal Management		
Data taking / detector		
Start-To-End-Simulation		
Online processing and online data reduction		
Data storage		
Offline data analysis		
FAIR data handling, publication and archiving		
Step-overarching: Metadata handling & ELN		
Step-overarching: Used data formats, Data flow & automatisation		

Answers:

- DESY
 - HEP
 - PhotonScience
- HI Jena
 - HI Laser
- HZB
 - Photon Science

- HZDR
 - Photon Science
 - THz Science
- FZJ
 - Neutron
 - Photon Science
- GSI:
 - HEP / CBM / Panda

Thanks everyone who participated in filling out the questionaires!

- We know:
 - Not all relevant centers
 - Not all relevant communities
 - ... but a start

Preparatory workshop June 2023 @ HZDR

- Finalizing & discussing questionaires
- summarizing them
- → The following slides will show a summary,
- → question by question
- → base for discussion

Center	Topic	Proposal Management
DESY	HEP	
DESY	Photon Science	DOOR (own)
HI Jena	HI Laser	
HZB	Photon Science	Gate+Umbrella
HZDR	Photon Science	Gate+Umbrella
HZDK	riiotoii Science	Gate+Offibrella
HZDR	THz Science	Gate+Umbrella
FZJ	Neutron	GhOST (Garching)
. 23	HEUGON	Gliosi (Galcillig)
FZJ	Photon Science	
GSI	HEP/CBM/Panda	

Proposal management

- Gate users already connected
- Where ST1 can help:
 - Offer ST1 communication platform on proposal management systems
- Essential for an ST1 federated infrastructure
 - proposal management metadata accessible for integration with other steps of lifecycle

Center	Topic	Datataking/Detector/Tool
DESY	HEP	experiment specific
		Tango/Sardana/bluesky/B
DESY	Photon Science	LISS?ASAPO
		Camera, Spectrometer,
HI Jena	HI Laser	Powermeter, Autocorrel
		Tango/Sardana/EPIC/Blue
HZB	Photon Science	sky
HZDR	Photon Science	EPICS
HZDR	THz Science	Labview
		Tango/NICOS/Ariane/HDF
FZJ	Neutron	5
FZJ	Photon Science	Tango/NICOS
		~TB/s, FairMQ (tested in
GSI	HEP/CBM/Panda	, ,

Datataking, detectors

- Common points:
 - Data in-memory-handling
 - HDF5 / Nexus
 - bluesky / tango /Epics / NICOS
- Where ST1 can help:
 - Offer ST1 communication platform
 - especially in-memory handling // future of labview // control systems and cross-control-systems-communities
- Essential for an ST1 federated infrastructure
 - Common file & metadata formats

C		Standard Cincolnia
Center	Topic	Start2End Simulations
		experiment specific
DESY	HEP	(DD4HEP, key4HEP,)
		Science Community,
DESY	Photon Science	different
		PiC, Hydrodyn. Sim,
HI lena	HI Laser	SMILEY
i ii Jelia	III Laser	
	DI-1	Science Community, Ray-
HZB	Photon Science	UI
HZDR	Photon Science	PiConGPU
HZDR	THz Science	,
IIZDI.	TITE Science	/
		Science Community,
FZJ	Neutron	Mcstas, Vitess,
FZJ	Photon Science	Science Community
F 2 J	Filoton Science	Science Community,
GSI	HEP/CBM/Panda	

start-to-end simlations

- no obvious gap
- more an application than infrastructure itself
- surrogate modeling (as an alternative to expensive simulations)
 - → Interface for ST2 & ST3 + Helmholtz AI
- Essential for an ST1 federated infrastructure
 - common exchange formats, metadata formats
 - Metadata input/output standardized for Chaining applications together
 - → data processing pipeline / workflow

		Online processing and
Center	Topic	online data reduction
DESY	HEP	experiment specific
		H5Tools, Maxwell,
DESY	Photon Science	ASAP3/O
HI Jena	HI Laser	EPICS, TANGO, Bluesky
		,
HZB	Photon Science	H5Tools
		Grafana/OPC-UA (data
HZDR	Photon Science	red. planned)
		rear prannear
HZDR	THz Science	Grafana/OPC-UA
IIZDK	THE Science	Grafalla/OFC-OA
		Use Community,
		Instrument specific,
FZJ	Neutron	Mantid,Scipp
		Use Community,
FZJ	Photon Science	Instrument specific
		Preanalysing data / ROOT
GSI	HEP/CBM/Panda	, , ,

Online processing and data reduction

- Discussion on significance of online data analysis
- Common points:
 - data reduction
- Communication:
 - "how fast should fast be" (experiment specific) → ST2
 - data reduction (experiment specific) → ST2
 - (Offer ST1 communication platform)
- Essential for an ST1 federated infrastructure
 - Monitoring
 - data & metadata formats
 - dynamic archiving

Center	Topic	Data storage
DESY	HEP	dCache, NAF NFS
DESY	Photon Science	GPFS/dCache/ASAP3
HI Jena	HI Laser	LocalHDD, central FS
HZB	Photon Science	local -> ICat
HZDR	Photon Science	GPFS (federated planned)
HZDR	THz Science	GPFS (federated planned)
		,
		NFS(SMB), SciCat,
FZJ	Neutron	SampleDB
1 23	Neutron	Samplebb
		NEC/CMP) CoiCat
FZJ	Photon Science	NFS(SMB), SciCat,
ΓLJ	Photon Science	SampleDB
GSI	HEP/CBM/Panda	Lustre&Tape

Data storage & data exchange

- Common points:
 - All (locally) rely on POSIX (network) filesystems with their strengths and limitations
- Essential for an ST1 federated infrastructure
 - data exchange: technical & (meta)-data formats
 - define minimal content of data policies → HMC
 - Work-item:
 - Setup data lake, e.g. join PUNCH and/or DAPHNE?

Center	Topic	Offline data analysis
DESY	НЕР	ATHENA, CMSSW,
DESY	Photon Science	Community / Maxwell- Infra
HI Jena	HI Laser	Scientist: "commercial Desktop tools"
HZB	Photon Science	Community
HZDR	Photon Science	HPC, HIFIS Jupyter
HZDR	THz Science	HPC, Jupyter
FZJ	Neutron	BornAgain, Jscatter, Crystalscatter, QtiSAS, DAaaS in progress + Jupyter,SciCat
FZJ	Photon Science	BornAgain, Jscatter, Crystalscatter, QtiSAS, DAaaS in progress + Jupyter,SciCat
GSI	HEP/CBM/Panda	GSI Farm

Offline data analysis

- Common points:
 - Jupyter
 - Wish list: Sharing interactive access to Jupyter notebook ... maybe via screen-sharing?
- Essential for an ST1 federated infrastructure
 - Jupyter + tools (e.g. combine with Base4NFDI Jupyter service / FZJ lead)
 - Notebooks in Gitlab (up to users/facilities to enforce)
- Work-item:
 - Distributed computing (e.g. integration, see previous slide)

Center	Topic	FAIR data handling	
DESY	НЕР	Specific, CTA, CERN OpenData, HERA DPHEP	FAIR data handling
DESY HI Jena	Photon Science HI Laser	SciCat / CTA/ PubDB HELlport, SciCat	Common points:SciCatHeliport
HZB	Photon Science	ICAT / PFSTA/PASTA	 Communication platform to Zenodo
HZDR HZDR	Photon Science THz Science	Rodare, Heliport, SciCat, Helmholtz Codebase, local Rodare, Heliport, SciCat, Helmholtz Codebase, local	 Work-item: Interconnecting SciCat installations, e.g (maybe small development, HZDR) Provide DMA test SciCat instance
FZJ	Neutron	SciCat, SampleBD, iMPULS, JUSER, dataverse	 Potential MongoDB licensing issues, alt Investigation: Model ST1 Lifecycle in He
FZJ	Photon Science		 Essential for an ST1 federated infrastr data repositories should be able to reposit
GSI	HEP/CBM/Panda		 Discipline specific repos can be found upon

o community

- g. connect to b2find
- ternatives?
- eliport ... Heliport test
- ructure
 - ort Metadata to b2find

Page 16

using re3data

Center	Topic	Medatada, ELN
DESY	HEP	Experiment specific
DESY	Photon Science	GammaPortal/SciCat
HI Jena	HI Laser	HMC HELPMI Proj.
HZB	Photon Science	??
HZDR	Photon Science	Mediawiki, SciCat
HZDR	THz Science	Mediawiki, SciCat, HELIPORT
FZJ	Neutron	SciCat/Workbench
FZJ	Photon Science	SciCat/Workbench
GSI	HEP/CBM/Panda	

Metadata, ELN

- Common points:
 - SciCat
- Choice of ELN up to sites
 - offer ST1 communication channels
- Essential for an ST1 federated infrastructure
 - ELN standarized exchange formats (e.g. XML, .eln, ...) and API
 - observe development (e.g. DAPHNE, ROCK-IT)

Center	Topic	Data formats, data flows
DESY	HEP	WLCG (incl. RUCIO) + CTA
DESY	Photon Science	HDF5, Nexus, ASAPO
		diff ->Nexus OpenPMD /
HI Jena	HI Laser	HELIPORT
5.		
HZB	Photon Science	HDF5/Nexus
HZDR	Photon Science	CWL, HDF5
HZDR	THz Science	UNICORE, HELIPORT
5.1		Workflows CWL
		investigation / Data
		formats under
FZJ	Neutron	investigations
		Workflows CWL
FZJ	Photon Science	investigation
GSI	HEP/CBM/Panda	
	·	

Data formats, data flow, automatisation

- HDF5
- RUCIO → Dev. team presented in seminar
- ST1 Communication platform on file formats
 - Essential for an ST1 federated infrastructure
 - File formats should be standardized and documented
- Work-Item: Setup RUCIO test installation (DESY,GSI,HZDR usage interest)

Other observations _ 1

- and did not fit up
- User support is mandatory! → Best-effort & self-support via Mattermost
- Globus endpoints / RUCIO / FTS ...how to organize large data transfers?
 - → RUCIO see other slide
 - → large data transfers: try out HIFIS FTS Service (later stage: Heliport integration) (general comment: avoid data transfers, e.g. data aware meta-scheduling)
- DESY: connect to WIMP community (ALPS, ...)
- Community: Control of experimental components → Mattermost community / ST1 communication
- User management, Authentication, Authorisation, ... ownership of data ...
 - \rightarrow AAI
 - → Mattermost community for config & conceptual exchange
 - → e.g. DAPHNE&PUNCH policy defining

Other observations _ 2

- And did not fit up
- Quota management, user data migration to tape → Mattermost community
- Strengthen PUNCH-DAPHNE-DMA interplay ... have interoperable view
 - → Invite DAPHNE/PUNCH/ROCK-IT to large workshop → Welcome ©
- Portals: Investigate on VISA and other portals → Seminars
- Points of interest: DAaaS, remote access, cloud infrastructure, data transf. between facilities
- One Goal: enable multi-modal experiments

What is the DMA ST1 communication infrastructure?

- So far:
 - DESY based mailing list → OK
 - DESY based confluence → needed DESY accounts, deprecated at DESY
 - DESY based Indico for conferences → OK, make more use of it
 - DESY based ZOOM for meetings / seminars → OK
- New channels:
 - Confluence → (HZB/nubes) → DESY SyncAndShare (+Helmholtz AAI!) (for minutes & internal documents)
 - Rapid communciation: Mattermose channels: HIFIS instance
 - Goal: Building up community, offering communication platform beyond the scope of the "Matter information fabric" infrastructure → ignite & moderate discussions on special topics
 - A face for non-ST1 people: Website
 - DESY hosted website
- Status: Working on this, need some underlying work on AAI ... hope still in 2023

... and two new topics of relevance after DMA setup

Sustainability

- different meanings: this time, the envirnmental definition:
- Infrastructures and workflows should be sustainable

Security

- Services and centers are being attacked
- Find suitable new services and infrastructures that are inherently secure and user friendly