
MT-DMA-ST2 Perspective

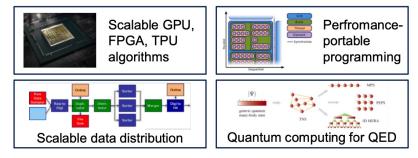
Mohammad Al-Turany Guido Juckeland

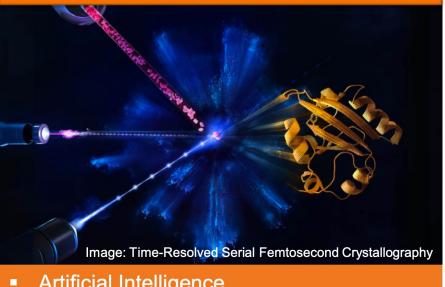
DMA – Set up for the digital future

DMA creates new synergies between centers, facilities, communities & leverages them

DMA ST 2 – The Digital Scientific Method

2023


DMA repository of interconnectable, modular software in full operation


 Toolbox for near-realtime data analysis at extreme scales available

2027

· Surrogate models of multi-source, multimodal experiments

Near real time A.I. analysis of complex systems

- Artificial Intelligence
- **Exascale Computing**
- Near real time analysis
- Quantum Computing

Staying ahead of the data deluge

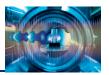
Milestone		Subtopic	Year	
DMA-4	Workshop defining and strengthening synergies in data lifecycle management among the participating facilities and communities	ST1	2022	Navy Bala
DMA-7	Provide a directory of interconnectable software packages including examples to cover the whole simulation and experiment life cycle	ST2	2023	New links created
DMA-2	S4M portal goes online	ST 1-3	2024	
DMA-8	Integration of near-real-time/online data analysis solutions for extreme scale data into the software toolbox of DMA	ST2	2025	Key capabilities available
DMA-12	Successful demonstrators of digital twins providing virtual data sets mimicking real time, real data operation	ST3	2027	Broad impact on all scales
DMA-3	All DMA-provided solutions are available online via S4M	ST 1-3	2027	

Continuous delivery of solutions

schedules

following facilities'

How to make software FAIR?


- working on "F" first
- increasing recognition of software

How to integrate simulation data?

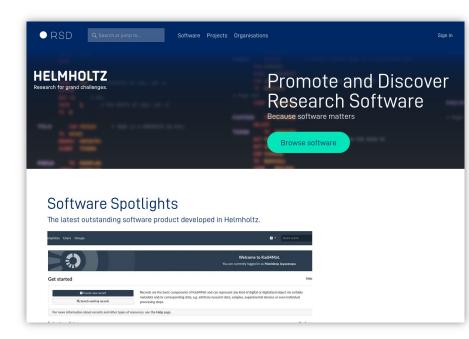
- Data formats/standards
- Data provenance for very large datasets

DMA ST 2 – Towards Milestone DMA-7 (2023)

- Provision of a directory of interconnectable software packages including examples to cover the whole simulation and experiment life cycle
 - ESCAPE-OSSR: provides a very good curation workflow, actual directory is a repository

(https://zenodo.org/communities/escape2020/search?q=&type=software)

 Helmholtz Research Software Directory: highly flexible software directory, but (currently) no curation


(https://helmholtz.software)

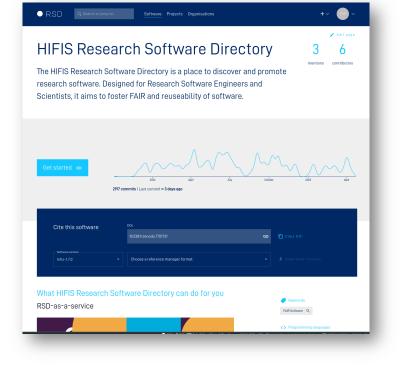
Idea: Combine workflows from both -> Use automated tools

Research Software Directory

Aim and benefits

https://helmholtz.software

- Online service to collect and present software in an academic context
- For Research Software Engineers
 - . Show impact their software has in research
 - Show relations to organisations, research projects and other software
 - Guide visitors to codebase
- For Researchers
 - Discover software they need in their research field
 - Get help for citing code they use
- For Organisations
 - Keep track of software
 - · Metrics and evaluation


Data sources

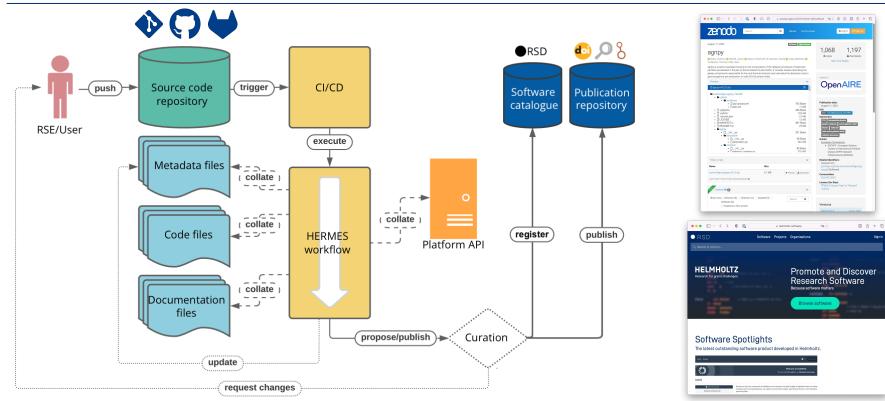
Authentication

HELMHOLTZ AAI

Code information

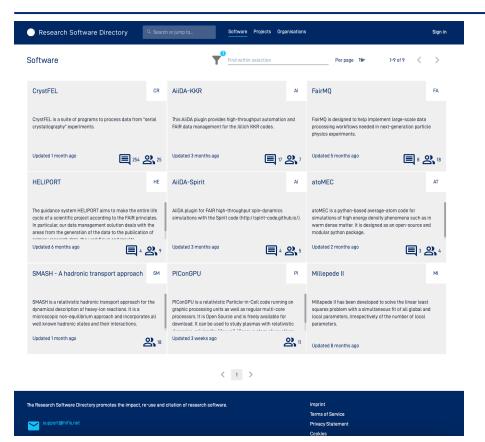
Organisations

Contributors


ORCID

References

The HERMES Workflow


...with Research Software Directory (RSD) Extension

CHMC> | HELMHOLTZ METADATA COLLABORATION

RSD + Matter – current state

M T 👹

- Foundation for Milestone DMA.07 done
- Content not yet rich
- → to be part of S4M portal (DMA.02+.03)
- We need to collect the groups to approach to help onboard their software packages (maybe also now already done via Helmholtz Software Award)
- Regular meetings for onboarding packages

Towards a quality indicator for research software -Status April 2023-

Subgroup Software Quality Indicator

Workpackage 1: Define quality dimensions and attributes

Scientific software of high standard should be reliable & sustainable

=> FAIR+ST

=> Quality dimensions to determine "reliable" and "sustainable"

Quality Dimensions

reliable & sustainable scientific software has to be

- Findable
- Accessible
- Interoperable
- Reusable
- Scientifically well-grounded
- Technologically well-grounded

Scientifically well-grounded means that scientific software is based on scientific knowledge and practice

Technologically well-grounded means that scientific software is based on software engineering knowledge and practice

	Software Quality				
Reliable & Sustainable					

HELMHOLTZ

Workpackage 2: Define maturity levels for quality attributes

Methode: Multivariate starplot and process-oriented maturity levels, COBIT Maturity Model (COBIT is an international recognized framework for IT Governance, it is directed to processes)

would be counted

minimal

requirements

maximum

score

Quality Dimensions (FAIR+ST)

- Attributes describing each dimension*
- Maturity levels for each attribute**
- Maturity levels for each dimension** derived form attribute maturity levels

* Paper FAIR4RS DOI: https://doi.org/10.15497/RDA00068 ** COBIT Maturity Model

HELMHOLTZ

Data formats/standards

- Nexus / OpenPMD in Laser Physics
- joint metadata catalogues between simulation and experiments

Data provenance

- How to include simulation workflows (reproducibility)? \rightarrow ST3
- How to handle multi-TB data sets from photon science?
 - What can we learn/reuse from HEP?
 - What can we learn from other communities?

