
The DAPHNE4NFDI project

Anton Barty 
FS Scientific Computing



DAPHNE4NFDI integrates the photon and neutron community

2



DAPHNE4NFDI integrates the photon and neutron community

2

Brings together:

• Large-scale photon and 
neutron research facilities  

• Universities 
• KFS  and KFN 
• Research institutions 
• Wider community



DAPHNE4NFDI integrates the photon and neutron community

2

Brings together:

• Large-scale photon and 
neutron research facilities  

• Universities 
• KFS  and KFN 
• Research institutions 
• Wider community

Lead institution: DESY 
Speakers:  Anton Barty, Bridget Murphy 
7 German large scale facilities + 11 Universities 
€3.3M/year, 5 years, €16.7M (with overhead) 
October 2021 to October 2026



DAPHNE4NFDI integrates the photon and neutron community

2

Funded partners
11 Universities 7 Large scale facilities

Brings together:

• Large-scale photon and 
neutron research facilities  

• Universities 
• KFS  and KFN 
• Research institutions 
• Wider community

Lead institution: DESY 
Speakers:  Anton Barty, Bridget Murphy 
7 German large scale facilities + 11 Universities 
€3.3M/year, 5 years, €16.7M (with overhead) 
October 2021 to October 2026



DAPHNE4NFDI integrates the photon and neutron community

2

Voluntary partnersFunded partners
11 Universities 7 Large scale facilities

Brings together:

• Large-scale photon and 
neutron research facilities  

• Universities 
• KFS  and KFN 
• Research institutions 
• Wider community

Lead institution: DESY 
Speakers:  Anton Barty, Bridget Murphy 
7 German large scale facilities + 11 Universities 
€3.3M/year, 5 years, €16.7M (with overhead) 
October 2021 to October 2026



DESY. 3

Keeping data has economic consequences
What is the economic value of data? Who pays? 



DESY. 3

Keeping data has economic consequences
What is the economic value of data? Who pays? 

• Academic tradition 
• ’Good scientific practice’  
• Sometimes mandated by law (USA)? 
• Typically archive all ‘raw’ data for 10 years 
• Including data known to be ‘dud’ 
• A ‘nice to have’ or ‘must have’? 



DESY.

Economic reality:  
Keeping raw data costs significant  
money (M€) and energy (MW) 
Keeping all data for lots of experiments 
becomes expensive very quickly 
Facility cost or user’s own cost?

3

Keeping data has economic consequences
What is the economic value of data? Who pays? 

• Academic tradition 
• ’Good scientific practice’  
• Sometimes mandated by law (USA)? 
• Typically archive all ‘raw’ data for 10 years 
• Including data known to be ‘dud’ 
• A ‘nice to have’ or ‘must have’? 



DESY.

Economic reality:  
Keeping raw data costs significant  
money (M€) and energy (MW) 
Keeping all data for lots of experiments 
becomes expensive very quickly 
Facility cost or user’s own cost?

3

Keeping data has economic consequences
What is the economic value of data? Who pays? 

• Academic tradition 
• ’Good scientific practice’  
• Sometimes mandated by law (USA)? 
• Typically archive all ‘raw’ data for 10 years 
• Including data known to be ‘dud’ 
• A ‘nice to have’ or ‘must have’? 

Most samples and experiments 
are replaceable at some cost 

in time and money



DESY.

Economic reality:  
Keeping raw data costs significant  
money (M€) and energy (MW) 
Keeping all data for lots of experiments 
becomes expensive very quickly 
Facility cost or user’s own cost?

3

Keeping data has economic consequences
What is the economic value of data? Who pays? 

• Academic tradition 
• ’Good scientific practice’  
• Sometimes mandated by law (USA)? 
• Typically archive all ‘raw’ data for 10 years 
• Including data known to be ‘dud’ 
• A ‘nice to have’ or ‘must have’? 

Most samples and experiments 
are replaceable at some cost 

in time and money

How much are we willing to spend to retain data? 
What data gives best value for money?  
What are we keeping it for?



DESY.

Economic reality:  
Keeping raw data costs significant  
money (M€) and energy (MW) 
Keeping all data for lots of experiments 
becomes expensive very quickly 
Facility cost or user’s own cost?

3

Keeping data has economic consequences
What is the economic value of data? Who pays? 

• Academic tradition 
• ’Good scientific practice’  
• Sometimes mandated by law (USA)? 
• Typically archive all ‘raw’ data for 10 years 
• Including data known to be ‘dud’ 
• A ‘nice to have’ or ‘must have’? 

Most samples and experiments 
are replaceable at some cost 

in time and money

How much are we willing to spend to retain data? 
What data gives best value for money?  
What are we keeping it for?

How much (limited) money do we 
spend on old data vs new outcomes?
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Data production and retention at PETRA-III today
A snapshot of the status quo

Snapshot in April 2023

• Current data retention policy 
• Data on disk for 180 days after measurement 

• (was: 180 days after last access) 

• All data migrated to tape after 180 days 
• retention on site (dCache), dual tape copy 
• 4.5 PB ingested to GPFS in past 12 months 
• 6 PB/year archived to tape 
• 12 PB tapes/yr with dual copy (€20K/PB/10YR) 

• Usage highly variable between instruments  

• Time to analyse data often limits publication rate 
• ~2 years from measurement to publication 

• Hardware typically has a 5 year lifetime 
• Budget for regular replacement
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• Consume between 1-2 MW of power and exceed the current data centre space 
• Swamp users with complicated data further increasing time on disk and slowing science output 

• Performance metric is publications and citations (re-use) not PB on disk
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Reality check: 
• Some single instruments at ESRF already produce 1 PB per day  
• In 2022, EuXFEL operating only 3 instruments simultaneously has produced 7 PB in a week (=364 PB/yr) 
• 1 PB/day * 5 flagship big data instruments * 180 days = 900 PB Actual peak TB generated in 24 hours  

by equivalent PETRA-III instruments in 2021
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• Who are we keeping it for? 
• Is it worth the cost? 

• What is the ‘raw data’ we aim to keep? 
• Photons not ADU, 1D powder … 
• For what purpose is the data being kept? 

• Clarity on when to discard data is needed 

• Temptation is to invest in new outcomes rather than old data 
• Money is limited and may come from the same (limited) budget 

• Persistent availability of data requires persistent funding 
• What happens at the end of a 5 or 10 year funding cycle?
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User competenceTrusted processing stepsInstrumentation

Result

Raw data
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Keep for <30 days Archive after 30 days

‘Raw data’ is typically the input to the user’s own data analysis pipeline 
or the limit of their expertise

• Accelerate the path to science outcomes
• Maximise information density of preserved data
• Potentially a significant reduction in archived data volumes
• ‘Safety net’ to catch errors or the unexpected
• Already done in other fields (eg: Square Kilometre Array telescope)
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Key products: 
• Repositories of raw data and  
   processed data linked to publications 
• Searchable federated catalogues 
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TA1: Managing data production 

Key products: 
• Electronic log books 
• SampleID database 
• Integration to instrumentation  

TA2: Data repositories and catalogues 

Key products: 
• Repositories of raw data and  
   processed data linked to publications 
• Searchable federated catalogues 

TA3: Infrastructure for evaluation and reuse 

Key products: 
• Sustainable and reusable software ecosystem  
• Power user software deployed on facility infrastructure 
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Daphne is introducing unique sample identifiers
Tracking samples from creation through to data and publication

12

• Uniquely identify samples so that they can be tracked through logbooks and datasets 
• Identifier should be unique and persistent - even though samples themselves may not always persistent 
• Must be simple, easy to use, minimal paperwork overhead

IGSN now works with DataCite
https://datacite.org

In September 2021, IGSN e.V. and DataCite entered a partnership 
under which DataCite will provide the IGSN ID registration 
services and supporting technology to enable the ongoing 
sustainability of the IGSN PID infrastructure. 

https://www.igsn.org/ 
* International Geo Generic Sample Number

https://ardc.edu.au/services

The IGSN* system has been developed for other disciplines 
IGSN is a globally unique and persistent identifier for material samples.

Single  
institution 
account

Facility 
Database

Researchers

M
ultiple user accounts

https://www.igsn.org/


DAPHNE is using SciCat as a catalogue foundation
DESY is in the process of deploying and developing SciCat as the FS data catalogue
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Discover data via WebUI User
specific
data

Facet
search

Archive 
Interface

Some features: 
• Data browsing 
• Data search 
• Data download 
• Access control 
• Federated login 
• Metadata management 
• Online logbooks 
• Online chat session 
• DataDOI generation 
• Archive interface 
• Catalogue harvesting 
• Data previews 
• ‘Data lake’ for  

• reference datasets  
• simulations  
• LK-I data

Initial development by



Harmonising ontologies and semantic interoperability

14

Standard file formats 
• Nexus adoption is a starting point 
• What about downstream data? 

Standard metadata 
• Community languages 
• Essential for interoperable catalogues 

Interoperability validators and libraries 
• eg: PDB check 

Daphne brings communities and facilities together



Task areas 3: Sustainable software development
Drawing on experience in professional IT at the facilities, eg:
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AAI infrastructure: UmbrelaID +  Keycloak

Strike a balance between agile user-focussed design with 
sustainability and integration as critical infrastructure

For example: DevOps model of software collaboration

Teach and practice sustainable research software 
development

Track guests using ORCID-ID? 
(‘login with facebook’ for researchers)



The DAPHNE work program targets data management 
resources for photon and neutron science
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Raw data catalogues
(SciCat/iCat/..)

Open Published Data Repository
(PDB/CXIDB for any technique)

Open software repository
(RSE - curated power user software)

Education and outreach
(Data management and RSE in courses)

Networking and Politics
(Daphne in the wider world)

Reference datasets
(Curated ‘gold standard’ reference data)

Facilities
(DESY/MLZ/HZB...)

Deployment
(DESY/MLZ/HZB...)

Portability
(standard file formats)

Sustainability
(standard libraries)

Power users’ 
software

Federated catalogue
(EOSC)

Cloud based analysis
(EOSC)

Research groups
(SciCat lite for Universities)

Electronic logbooks

Standard file formats
(NeXus adoption)

Metadata harvesting

Sample PIDs
(IGSN)

Daphne infrastructure
(work program overview)

Use cases:
• CrystFEL
• XPCS
• ...

Use cases:
• DESY P08 (development case)
• ...

GitLab (HiFiS)

Questions:
1. Who (names, partners) are actively contributing where
2. Resource allocation / spread
3. Tracking progress (milestones / project reporting)

TA4

TA5

TA3

TA2/3

TA2

TA1/2

TA1

TA1

TA1

TA1

Anton Barty
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End


