Interdisciplinary Data and Analysis Facility IDAF: - what it is in a nutshell - brainstorm: IDAF & ST1 federated infrastructures

Christian Voß & <u>Yves Kemp</u>

MT-DMA ST1 synergy workshop

DESY 10.11.2023

HELMHOLTZ

IDAF in the PoF IV Proposal

Goal of the IDAF

The Evolution of the LK II Tier-2 Facility

- Recommendation: Tier-2 LK II Facility should support additional user communities
- Observation throughout all Programs in Matter
 - Growing data deluge Important to access and analyse large amounts of data

Necessity for a facility to store and analyse data with access for all scientists within Matter.

From LK II Tier-2 — Interdisciplinary Data and Analysis Facility

- Association with M T
- Current setup planned at DESY (very broad matter community, experience with Tier-2)

DESY.

Interdisciplinary Data and Analysis Facility

Supported Communities

- Accelerator Data
 FLASH. Free-Electron Laser FLASH
 - Accelerator Development
 Data

- HPC simulations
- Test-beam data

DESY

Detector and Accelerator R&D

Facility User Data

Free-Electron Laser FLASH

 Data of external Partners

Particle Physics Data

Astro-Particle Data

Astro- Particle Physics

Services in the IDAF

Small Overview over all Customers

For particle physics communities:

- WLCG-Tier2 & Belle II raw data center
- Complete data lifecycle for local experiments

For photon science communities:

- Direct connection & Tier-0 for large scale facilities at DESY: FLASH / Petra III / EuXFEL
- Complete data lifecycle for these facilities

For accelerator/detector communities:

- Offer storage resources to accelerator division for operating and simulation resources for R&D
- Support for BEAM.

Jupyter

Services for all communities

- Interactivity & fast turn-around: Login-nodes, Jupyter, FastX remote desktop
- GPU resources

- Software installation & distribution, support
- Support of custom containers on clusters

Services on the roadmap

- **ASAP::** Integrate data flow pipelines incl. data reduction
 - Offer modern analysis tools(e.g. Dask/Spark)
 - Integration of catalogues & portals
 - Support for OpenData & FAIR

Concept of clusters for data driven science:

"A strongly interconnected Storage & Compute form the core of the infrastructure. Users interact with Storage & Compute through well integrated services & portals."

Import/Export to/from outside DESY

FLASH

IDAF: Bandwidth for Flow of Data

Connecting Detectors, Storage and Compute

- Ingest rates up to several PiB/day
- Split between HPC and HTC both in compute and storage
- Photon science centred on HPC
- More steady analysis patterns of particle physics centred on HTC
- Overall about
 - 80k cores / 250GPUs
 - 200PiB GPFS/dCache storage
 - Recently extended tape system (stored currently ~150PiB)
 - 1.5k servers
- Very heterogeneous hardware

Glossary

dCache Storage

- Large data storage
- Interface to tape
- Access protocols for WAN & local

GPFS

- High performance data storage
- Interface to photon science DAQ
- POSIX access

Maxwell HPC

- High Performance Compute
- PhotonScience & Accelerator R&D+operations
- Access: interactive services (ssh, jhub, fastx)
- Offline analysis, simulation

DESY Grid Cluster

JAGI

- High Throughput Compute
- WLCG Tier-2 and Belle 2 Raw Data center
- Access through Grid means
- Production type jobs

National Analysis Facility NAF

- High Throughput Compute
- German HEP users, Belle 2 users, DESY local
- Access: interactive services (ssh, jhub, fastx)
- Analysis type of jobs

Users of the NAF

Example for a Service with large Number of (inter-)national Users

- Interactive usage of the NAF
 - Most users from German universities
 - All Belle II scientists are potential NAF users
 - Large number of international users

- Data access inside NAF (only dCache shown)
- Additional storage space for NAF (linked to experiment frameworkd)
- CMS as largest contributor
- Jobs do almost exclusively POSIX

Ideas for IDAF $\leftarrow \rightarrow$ MT-DMA ST1 interplay

Disclaimer:

- The following slides are meant for illustration and discussion purpose
- They do not represent current status of implementation and do not show an approved setup or work plan

Federating the users

Status now

- Users of Maxwell & NAF need a DESY account
- Various options exists for external people
- Idea: Use federated (Helmholtz?) AAI for accessing services?

Opportunities

- Access to compute service *integrated* with storage
- Putting away burden of DESY account creation & care
 Challenges
- Getting authorization for external people right
- Mapping different identities of same user
- Resource planning and sharing with other users

Offering new services

Outlook

- Once users are federated
- Easy to offer new *integrated* services:
 - AAI established
 - Compute & storage access stable
- Different groups can contribute to IDAF services

Federated AAI

Federating the storage

- Remote integration into PUNCH storage instance at DESY
- Pools at different sites, single federated instance
- Concepts and following slides by Christian Voss

Basic setup: Standard singe site setup

Layout of Federated dCache: Simplest, most centralized Layout

•

٠

Layout of Federated dCache: Simplest, most centralized Layout

•

General Features

Advantages and Disadvantages

Requirements

- Depending failure tolerance (networking issue at central site, maintenance at central site)
- Ports from DESY to remote sites (still in discussion)
- Basic: only pools on remote site
 - Ports to DESY: dCache communications (11111), Zookeeper (2181), Kafka (9092)
 - Optional local: data access to pools to/from other remote sites

Deployment

- Container based setup: provide a container for sites to deploy (WIP)
- Stick with established Singularity workflows using CVMFS for distribution
- Local admin offers data directory and ports
- DESY admins: map namespace entry-point to remote storage area

Policy Questions

- Security questions: security of Zookeeper/Kafka
- Opening ports to specific remote sites easier
- Generic openings more difficult/impossible

Federating the compute: e.g. COBalD/TARDIS

Picture from Matthias Schnepf

Status & Outlook

- Currently being setup up
- Pilot integration into production NAF setup planned

Disclaimer. Idea for Disclaimstormingonly Wainstorm Page 17

Enabling remote compute services: An IDEA

Picture from Matthias Schnepf

The Software

CVMFS

- e.g. central Stratum 0
- Software available at all connecting sites
- Analyze: non-public software

Containers & registry

- Running containers must be supported
- Integrated in IDAF
- CI/CD workflows to be established in a federated way
- Federated Gitlab

Backup slides

On-Site: Particle Physics, Accelerators, Photon Science

Enable the Full Analysis/Data Lifecycle: From Simulation to Publication and Archival

On-Site Example

User Proposals for European XFEL

Developed largely by our colleagues at the European XFEL → Analysis is centered on IDAF

Challenges: Data Deluge in Photon Science

Photon Science and Especially European XFEL Continued to Grow Exponentially

- Exponential growth for photon science!
- Accelerator division starts to contribute (2 weeks of XFEL Linac operation: ~1PiB)
- HPC cluster storage similarly increased
- Capacity growth slow down/halt during end of 2022 due to funding situation
- Alternative usage of existing capacity
- More heavy involvement of tape storage (as done by ATLAS in the WLCG)
- European XFEL still expects to collect 50PiB in 2024

- Observe scaling issues for the IDAF
- Number of dCache pools causes issues when rebalancing after introducing new pools
- Pool nodes start pile up in the computing centre: start experience limits to rack space

Interdisciplenary Data and Analysis Facility (IDAF)

Origins and Overview

DESY historically centred on Particle Physics together with strong accelerator division:

- HERA and original PETRA accelerators
- Discoveries: Gluon and B-mixing

Accelerated transition to an accelerator laboratory with

- Large photon science user facilities
- Large local particle physics groups
- Obvious when looking at provided and used storage[®]

Paradigm: Data Analyses are Data Driven

As Underlying Principle of the Particle Physics Infrastructure

Almost all HEP data analyses require access to large amounts of data •

Challenges: The Return of POSIX

POSIX Reliance on Data Access

- We see ever increasing POSIX access pattern
 - Photon science software often can only ready via POSIX (native GPFS mount or through dCache-NFS-mounts)
 - Becomes more and more true for particle physics as well (despite XrootD): On Grid we see XrootD/WebDAV, but on NAF we see >90% NFS (dCache and GPFS)
 - ATLAS less prone, CMS and Belle II use POSIX almost exclusively
 - Depend a lot on the NFS client: Linux discussion from yesterday
 - Strange interaction e.g. with ATLAS Rucio namespace
 - Complicates merging of HPC and HTC part → make sure both share the same namespace
 - How to treat native GPFS on HPC on HTC (again NFS?)
- Not sure how well the upcoming Analysis Facilities deal with it

Challenges: Using HTC as HPC

Excessive Access Pattern from HEP Users on NAF

- Classically ideal read pattern: 1 job reads 1 file
- Experience quite aggressive job patterns on NAF
 - CMS users submitting 100k jobs at once
 - Job starting together leads to large number of reads
- Custom frameworks of local trigger many parallel reads
- Overloads dCache storage nodes, turning pools unresponsive
- Causes snowball effect on the worker nodes
- One user can cause the whole NAF to become unresponsive

Percent

Challenges: Security

Harden the IDAF against External Threats

- Several German universities and institutes have been hacked recently also in Helmholtz Association:
 - E.g. Helmholtz Zentrum Berlin (also operates photon science user facilities with external users)
- In the era of federations, a hacked account at \$REMOTE poses a danger also at \$HOME
 - The communication channels in federations w.r.t. security are brought to life
 - Found some federations especially lacking in that regard (e.g. EGI-Checkin)
 - See how token transition from X.509 certificates changes this
- In case of a whole center being hacked, other players have other communication
 - Federal police communicates differently than befriended admins laboratory wide strategy on incidents
- Security effort increases:
 - On system level: Hardening of systems in the IDAF (root login only through intranet, MFA logins)
 - On network: Reduce connections IDAF $\leftarrow \rightarrow$ internal network
- DESY.
 - At the entropy of Introduction of MEA planned for and of 2022 for all interactive leging to IDAE

Challenges: Sustainability

How to Make the Infrastructure more Sustainable

Constant improvement in DESY computing centre and infrastructure on DESY Campus w.r.t. energy efficiency

- Energy price becomes an additional incentive to be more efficient
- Hardware life cycle under close watch
 - **Compute:** Adapt hardware availability to power availability and/or user needs

Storage: Unused data on tape \rightarrow Tape?

Raising awareness of users

Train users on most efficient use of IDAF

Train users on tooling and optimal algorithms

Interactivity and fast reaction come with inefficiencies: **DESY.**

Provided by T. Hartmann

BESY. More and more difficult to fill open positions and attract people for IDAF operation & development

Challenges: Hardware evolution and Person Power

Difficulty Acquiring Hardware and Filling Open Positions

Hardware evolution

- Short-term: Supply chains have still not returned to full capacity after end of pandemic
- Short/mid-term: GPU: NVIDIA dominance is, scientific communities should be more open/flexible
 - Many interesting architectures / accelerator products out there vs. CUDA convenience
- Mid/long-term: Cloud providers driving technology
 - Started to offer tape for 'ultra-cold storage' → profound effect on design of tape libraries not well suited to the IDAF
 - Some architectures already now only available in commercial clouds
- Mid/long-term: First quantum computer commercially available. Bring QC into the IDAF

Person Power

Page 30

Detailes Cobald/Tardis setup ... e.g. NAF

