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Recap of Lecture I

Qubits

> Quantum mechanical two level systems H = {|0〉 , |1〉}
> Can be in superposition

> Qubits can be entangled

Quantum gates and quantum circuits

> Quantum gates: unitary operations on a single/few qubits

> Combining quantum gates we can express any unitary

operation

|0〉 H • 

|0〉 

Realization of qubits in physical systems

> Neutral atoms

> Trapped ions

> Superconducting qubits −2 −1 0 1 2
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Outline

Superdense coding

The Deutsch-Josza algorithm

Complexity theory

Hybrid quantum-classical algorithms
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Superdense coding

Setting

> Alice wants to communicate two classical bits to Bob

> Classically we have to send (at least) two bits

> Can we do better using quantum bits?
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Superdense coding

Bell states

> There are four Bell states

|Φ+〉 = 1√
2

(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
,

∣∣Ψ+
〉
=

1√
2

(
|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉

)
∣∣Φ−〉 = 1√

2

(
|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉

)
,

∣∣Ψ−〉 = 1√
2

(
|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉

)
> All Bell states represent a maximally entangled pair of qubits

> They form a basis for the Hilbert space of two qubits

> Applying one of the Pauli gates X, Y or Z to one of the qubits transforms them into

each other (up to global phases)

X ⊗ 1 |Φ+〉 =
∣∣Ψ+

〉
, Y ⊗ 1

∣∣Φ+
〉
= −i

∣∣Ψ−〉 , Z ⊗ 1
∣∣Φ+

〉
=
∣∣Φ−〉
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Superdense coding

Superdense coding

> Prepare a Bell state, e.g. |Φ+〉

> Alice and Bob each get one qubit of the Bell state

> Alice applies a Pauli gate on her qubit depending on
the classical bitstring she wants to send

1 for 00

X for 01

Y for 10

Z for 11

> Alice sends her qubit to Bob

> Bob performs a Bell measurement which tells him

Alice’s bit string

⇒ We only need a single qubit!
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Superdense coding

Superdense coding

> The entangled Bell pair is a resource

> It can be shared long before the communication

should take place

> Communication is secure

If an eavesdropper gets access to Alice’s qubit they

only have one of the qubits

As we have seen the reduced density operator for a

single qubit of Bell state is maximally mixed

ρ1 =
1

2
(|0〉〈0|+ |1〉〈1|)

⇒ The eavesdropper cannot infer information about

the classical bit string
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2.

Superdense coding

The Deutsch-Josza algorithm

Complexity theory

Hybrid quantum-classical algorithms
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The Deutsch-Josza algorithm

Setting

> Given: a function f : Zn
2 → Z2 that is promised to be constant or balanced

> Task: find out if f is constant or balanced

> Classical computer: try more than half of the possible

inputs

⇒
1

2
× 2n + 1 = 2n−1 + 1 function calls

> Let us assume we have a unitary Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉

|x〉 n/
Uf

|x〉
|y〉 |y ⊕ f(x)〉

> Uf is called an oracle

x0 x1 f(x0, x1)

0 0 1

0 1 1

1 0 0

1 1 0
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The Deutsch-Josza algorithm

Deutsch-Josza algorithm

|0〉 n/

�
�
�
�
�

H⊗n

�
�
�
�
�

Uf

�
�
�
�
�

�
�
�
�
�

Uf

�
�
�
�
�

H⊗n

�
�
�
�
�



|0〉 Z //

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉 |ψ6〉
1 |ψ1〉 = |0...0〉 |0〉

2 |ψ2〉 = (|0〉+ |1〉)⊗n |0〉 = (
∑

x |x〉) |0〉
3 |ψ3〉 =

∑
x |x〉 |0⊕ f(x)〉 =

∑
x |x〉 |f(x)〉

4 |ψ4〉 =
∑

x(−1)f(x) |x〉 |f(x)〉
5 |ψ5〉 =

∑
x(−1)f(x) |x〉 |f(x)⊕ f(x)〉 =

∑
x(−1)f(x) |x〉 |0〉

f(x) constant

6 |ψ5〉 = ±
∑

x |x〉 |0〉
7 |ψ6〉 = ± |0...0〉 |0〉

f(x) balanced

6 |ψ5〉⊥ |φ〉 =
∑

y |y〉 |0〉
7 0 = 〈φ|ψ5〉 = 〈φ|H⊗nH⊗n|ψ5〉 = (〈0...0|〈0|)|ψ6〉
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f(x) constant

6 |ψ5〉 = ±
∑

x |x〉 |0〉
7 |ψ6〉 = ± |0...0〉 |0〉

f(x) balanced

6 |ψ5〉⊥ |φ〉 =
∑

y |y〉 |0〉
7 0 = 〈φ|ψ5〉 = 〈φ|H⊗nH⊗n|ψ5〉 = (〈0...0|〈0|)|ψ6〉
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The Deutsch-Josza algorithm

Deutsch-Josza algorithm

> Quantum algorithm allows for deciding whether f is balanced or not with two calls to

the oracle (independent of n)

> Query the oracle in superposition

> Constructive interference (destructive interference) yields an unity (zero) amplitude

in the constant (balanced) case

The Deutsch-Josza algorithm needs exponentially fewer calls to the oracle than the

classical algorithm.
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The Deutsch-Josza algorithm

Deutsch-Josza algorithm on quantum hardware

> Example for n = 2 input bits and the

following Boolean function

x0 x1 f(x0, x1)

0 0 0

0 1 1

1 0 1

1 1 0

Uf

•
= •

> Results on actual quantum

hardware (ibmq_lagos)

00 01 10 11

Measurement outcome

0

200

400

600

800

1000
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en

cy

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 01.08.2023 Page 12



The Deutsch-Josza algorithm

Deutsch-Josza algorithm on quantum hardware

> Example for n = 2 input bits and the

following Boolean function

x0 x1 f(x0, x1)

0 0 0

0 1 1

1 0 1

1 1 0

Uf

•
= •

> Results on actual quantum

hardware (ibmq_lagos)

00 01 10 11

Measurement outcome

0

200

400

600

800

1000

F
re

qu
en

cy
DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 01.08.2023 Page 12



3.

Superdense coding

The Deutsch-Josza algorithm

Complexity theory

Hybrid quantum-classical algorithms
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Complexity theory

Solving problems on a quantum computer

> Many more known quantum algorithms that (might) perform better than the best

known classical algorithms

I Shor’s factoring algorithm

I Grover’s search algorithm

I HHL algorithm for linear equations

I Quantum Simulation

I Bernstein–Vazirani algorithm

I ...

> Exploiting quantum features such as superposition and entanglement these

algorithms can outperform the best known classical algorithms

Which problems can be solved efficiently on quantum computers?

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 01.08.2023 Page 14

Catalog of quantum algorithms: https://quantumalgorithmzoo.org/

https://quantumalgorithmzoo.org/


Complexity theory

Solving problems on a quantum computer

> Many more known quantum algorithms that (might) perform better than the best

known classical algorithms

I Shor’s factoring algorithm

I Grover’s search algorithm

I HHL algorithm for linear equations

I Quantum Simulation

I Bernstein–Vazirani algorithm

I ...

> Exploiting quantum features such as superposition and entanglement these

algorithms can outperform the best known classical algorithms

Which problems can be solved efficiently on quantum computers?

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 01.08.2023 Page 14

Catalog of quantum algorithms: https://quantumalgorithmzoo.org/

https://quantumalgorithmzoo.org/


Complexity theory

> P: decision problems solvable by a

deterministic Turing machine in

polynomial time, “easy problems”

> NP: decision problems solvable by a
non-deterministic Turing machine in
polynomial time

“Hard problems”

Solution can be checked on a

deterministic Turing machine in

polynomial time

BQP (bounded-error quantum polynomial time):

> Decision problems solvable by a quantum computer in polynomial time

> Quantum equivalent to P, “easy problems”
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Complexity theory

The Church-Turing thesis

All physically reasonable models of computation have the same set of computable

functions.

⇒ Quantum computers cannot compute functions that are uncomputable on a classical

computer

The extended Church-Turing thesis

All physically reasonable models of computation differ in complexity by at most

polynomial factors.

⇒ Extended Church-Turing thesis would no long hold if quantum supremacy is

demonstrated
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4.

Superdense coding

The Deutsch-Josza algorithm

Complexity theory

Hybrid quantum-classical algorithms
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Hybrid quantum-classical algorithms

Current NISQ devices

> Small or intermediate scale

> Considerable amount of noise

> Only shallow circuits can be executed

faithfully/no error correction

> Quantum advantage demonstrated

Solving “useful” problems

> Large number of qubits

> Deep circuits

> Quantum error correction necessary

> So far only proof of principle

demonstrations

How can we utilize existing quantum hardware in a beneficial way?
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Hybrid quantum-classical algorithms

Hybrid quantum-classical algorithms

> Combine classical and quantum devices

> Rely on classical computing where possible

> Use the quantum device as a coprocessor

Tackle the classically hard/intractable part of the problem

Feed the classical data obtained from a measurement back to the classical computer

Even modest quantum hardware can yield advantages
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Hybrid quantum-classical algorithms

Hybrid quantum-classical algorithms

> Focus on optimization problems

min
~θ

C(~θ), ~θ = Rn

> Solve them iteratively using a parametric ansatz

Quantum coprocessor: efficiently evaluate the cost function C(~θi) for given ~θi
Classical computer: given C(~θi), find optimized ~θi+1

⇒ Feedback loop between the classical computer and the quantum device
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Quantum Approximate Optimization Algorithm (QAOA)



Hybrid quantum-classical algorithms

Quantum Approximate Optimization Algorithm (QAOA)

> Algorithm for approximating (binary) combinatorial optimization problems

min
x∈V

C(x)

subject to x ∈ S

> x: binary string in V = {0, 1}n encoding a solution

> S ⊆ V : feasible solutions

> C : V → R cost function

> Objective is to find the optimal solution
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Hybrid quantum-classical algorithms

The Max-Cut problem

Max-Cut

> Input: undirected graph G = (V,E)

> Task: find a bipartition of V = A ∪B such that the number

of edges between A and B is maximal

> Max-Cut is NP-hard

⇒ We cannot find a (quantum) algorithm which solves it

polynomial time

> We can however try to find a good approximation to the

exact solution in polynomial time
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Hybrid quantum-classical algorithms

Max-Cut as combinatorial optimization problem

> Max-Cut on a Graph G = (V,E) can be expressed as

combinatorial optimization problem

> Label the vertices as xi define a function wij

xi =

{
0 if i ∈ A

1 if i ∈ B
wij =

{
1 iff (i, j) ∈ E

0 otherwise

> Cost function

C(x) =
n−1∑
i,j=0

wijxi(xj − 1) =
∑

(i,j)∈E

(xi(xj − 1) + xj(xi − 1))

⇒ Contribution of −1 iff endpoints of edge (i, j) belong to different subsets

> Finding the Max-Cut for G is equivalent to minimizing C(x)
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Hybrid quantum-classical algorithms

Max-Cut as Hamiltonian problem

> Cost function can be turned into a Hamiltonian using the mapping xi → 1
2(1− Zi)

Hc =
1

2

∑
(i,j)∈E

(ZiZj − 1)

> Diagonal Hamiltonian of Ising type, summands commute

> The eigenstates of H are computational basis states encode graph cuts

> The lower the energy, the larger the number of edges between the subsets

> The ground state encodes the bit string of the optimal solution x∗

How to obtain a low energy state of H?
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Hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> We want to find a parametric quantum state |ψp(~γ, ~β)〉, ~γ, ~β ∈ Rp which minimizes

C(~γ, ~β) =
〈
ψp(~γ, ~β)

∣∣∣Hc

∣∣∣ψp(~γ, ~β)
〉

> Transverse field Hamiltonian

Hx =
∑
i

Xi

> Ansatz for |ψp(~γ, ~β)〉

|ψp(~γ, ~β)〉 = e−iβpHxe−iγpHc . . . e−iβ1Hxe−iγ1Hc |+〉⊗n

> |+〉 = 1√
2
(|0〉+ |1〉) is an eigenstate of X, X |+〉 = +1 |+〉
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Hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> Ansatz for |ψp(~γ, ~β)〉

|ψp(~γ, ~β)〉 = e−iβpHxe−iγpHc . . . e−iβ1Hxe−iγ1Hc |+〉⊗n

> Circuit for p = 1

q0 : |+〉 • • • Rx(β1)

q1 : |+〉 • • Rx(β1)

q2 : |+〉 • • Rx(β1)

q3 : |+〉 • • • Rx(β1)
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Hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> |ψp(~γ, ~β)〉 can be an (entangled) superposition of basis states

> Measuring |ψp(~γ, ~β)〉 gives us distribution of bit strings x
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Hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> After minimizing C(~γ, ~β) the wave function |ψp(~γ, ~β)〉 has dominant component(s) of

low energy states of Hc

⇒ Measuring |ψp(~γ, ~β)〉 gives us a bit string(s) x with high approximation ratio

α =
C(x)

C(x∗)

> Optimization of the parameters
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Hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> Ansatz is inspired by trotterized adiabatic time evolution

> Choose functions γ(t), β(t) such that

γ(t) →

{
0 for t→ 0

1 for t→ T
β(t) →

{
1 for t→ 0

0 for t→ T

and set

γp = γ(p∆t)∆t, βp = β(p∆t)∆t

> With these conventions each time steps corresponds to

e−iβpHxe−iγpHc ≈ e−i
(
β(p∆t)Hx+γ(p∆t)Hc

)
∆t

> In the limit p→ ∞ the QAOA ansatz can be seen as adiabatic transformation of the

initial eigenstate of Hx to the ground state of Hc
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Hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> Even p = 1 can in general not be simulated on a classical computer efficiently

> For some problems classical algorithms got a better approximation ratio α

> Performance depends on the ratio of variables to clauses

⇒ Theoretically it is not entirely clear how QAOA performs
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Variational Quantum Eigensolver (VQE)



Hybrid quantum-classical algorithms

Variational Quantum Algorithms

> Similar principle can be used to find ground states of quantum Hamiltonians

> Define a cost function

C(~θ) = 〈ψ(~θ)|H|ψ(~θ)〉
> |ψ(~θ)〉 ansatz realized by a parametric quantum circuit

> Provided |ψ(~θ)〉 is expressive enough the minimum of C(~θ) is obtained for the ground

state of H
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Variational Quantum Algorithms

Variational Quantum Eigensolver (VQE)

> For Hamiltonians H that are the sum of a polynomial number of terms the cost

function can be measured efficiently on a quantum device, for example

H =

N∑
i=1

hi,i+1 ⇔ C(θ) =
∑
i

〈ψ(~θ)|hi,i+1|ψ(~θ)〉

> In general 〈ψ(~θ)|hi,i+1|ψ(~θ)〉 cannot be efficiently evaluated on a classical computer

> Example: the Ising model

HIsing =

N−1∑
i=1

ZiZi+1 + h

N∑
i=1

Xi
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Variational Quantum Algorithms

Variational Quantum Deflation (VQD)

> VQE can also be extended to higher excited states

Heff = H + β

n∑
k=0

|ψk〉〈ψk|

> β has to be chosen large enough
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Variational Quantum Algorithms

Variational Quantum Deflation (VQD)

> In practice we never explicitly construct the projector

> Rather we have have to computer overlaps

C(~θ) = 〈ψ(~θ)|Heff|ψ(~θ)〉 = 〈ψ(~θ)|H|ψ(~θ)〉+ β
∑
k

|〈ψk|ψ(~θ)〉|2

> There are several ways to compute the overlap

“Reversing the circuit”: double the depth but keep same number of qubits

SWAP test: same circuit depth but double the number of qubits
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Variational Quantum Algorithms

Reversing the circuit for computing absolute values of overlaps

> Since both |ψk〉 = V (~χ) |0〉 and ψ(~θ) = U(~θ) |0〉 are variational circuits the absolute

value of the overlap is given by

|〈ψk|ψ(~θ)〉| = | 〈0|V †(~χ)U(~θ) |0〉 |

> The absolute value can thus be estimated by preparing the state V †(~χ)U(~θ) |0〉 and
recording the number of times one measures |0〉 at the end

> For commonly used quantum gates the inverse is often trivial
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Variational Quantum Algorithms

SWAP test for computing absolute values of overlaps

> The SWAP test allows for computing the

overlap of arbitrary states in registers

> Based on the controlled SWAP
operation/Fredkin gate

1 Start from |0, ψ, φ〉
2 Hadamard creates 1

2 (|0, ψ, φ〉+ |1, ψ, φ〉)
3 Fredkin gate yields 1

2 (|0, ψ, φ〉+ |1, φ, ψ〉)
4 Hadamard creates

1
2 |0〉 (|ψ, φ〉+ |ψ, φ〉) + 1

2 |1〉 (|ψ, φ〉 − |φ, ψ〉)
5 Probability of measuring the ancilla in state |0〉:
p0 = 1

2 + 1
2 | |ψ, φ〉 |

2

> More efficient ways for VQD: destructive

SWAP test

|0〉 H • H 

|ψ1〉 KKK sss

|ψ2〉
sss
KKK
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Variational Quantum Algorithms

QAOA

> Combinatorial optimization problems

> Problem Hamiltonian is diagonal in the

computational basis

> Circuit structure is fixed

> In the limit of infinite layers provably

converges to the exact solution

VQE

> Ground states/low-lying excitations

> Efficient as long as H has only a

polynomial number of terms

> Hamiltonian exists only as a

measurement

> Great freedom choosing the circuit

Problem requirements

Available hardware

Expressiveness

> Best answer for the given set of resources

> Largely resilient to systematic errors of the device
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Example: VQE for the Schwinger model



Variational Quantum Algorithms

VQE for the Schwinger model

> Hamiltonian in spin language after integrating out the gauge fields

H = w

N−1∑
j1

(
σ+j σ

−
j+1 + σ−j σ

+
j+1

)
+
m

2

N∑
j=1

(−1)jZj + g

N∑
j=1

(
ε0 −

1

2

j∑
l=1

(
Zj + (−1)j

))2

> Symmetries of the problem

Conservation of total charge Qtot =
∑

nQn =
∑

n Zn

CP symmetry within a charge sector: reflecting around the center and flipping the spins

> Symmetries can be incorporated in the VQE ansatz
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Variational Quantum Algorithms

VQE for the Schwinger model

> Resource Hamiltonians used for gate operations U = exp(−iθHk
R)

H0
R =

N−1∑
i=1

N∑
j=i+1

Jij(σ
+
i σ

−
j + σ−i σ

+
j ) +B

N∑
i=1

Zi, Hj
R =

∆0

2
Zj

> Resource Hamiltonians respect charge conservation

> Restrict the parameters of the single-qubit gates as

θj = −θN+1−j to enforce CP symmetry

> For large systems the bulk should approximately be

translation invariant

⇒ Restrict parameters in bulk to the same value

> Initial wave function compatible with the symmetries: Neel state |ψ0〉 = |↑↓ · · · ↑↓〉
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Variational Quantum Algorithms

VQE for the Schwinger model

> Results on a trapped ion quantum computer with 20 qubits formed by 40Ca+ ions

> Simulation involves 6 layers and 15 parameters

⇒ Ground state can be determined with good accuracy
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Variational Quantum Algorithms

VQE for the Schwinger model

> As we have seen in the previous lecture, a negative mass in the Schwinger model

corresponds to the case of θ = π

> For this value of θ, the model undergoes a second

order phase transition for

> The phase structure with negative masses can also be

explored with VQE

> The detect the phase transition monitor

O =
1

2N(N − 1)

∑
i,j>i

(
(1 + (−1)iZi)(1 + (−1)jZj)

)
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Thank you for your attention!

Questions?


