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Acknowledgements and further reading

A lot of inspiration taken from the following lectures:
> Louis Lyons - Practical Statistics for Physicists.
Stephanie Hansmann-Menzemer - Modern Methods of Data Analysis.

Andreas Hoecker - Foundations of statistics.

vV V V

Tommaso Dorigo - Statistics Topics for Data Analysis in Particle Physics:
an Introduction.

\Y

Kyle Cranmer - Practical Statistics for Particle Physics.

> Thomas Junk - Data Analysis and Statistical Methods in Experimental
Particle Physics.

Books:

> Particle data group statistics review - concise, contains almost everything.
> Glen Cowan - Statistical data analysis.

> Trevor Hastie et al. - The Elements of Statistical Learning.

>

Olaf Behnke et al. - Data Analysis in High Energy Physics: A Practical
Guide to Statistical Methods.

J. VanderPlas et al. - Introduction to astroML: Machine learning for

astrophysics
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https://indico.cern.ch/event/387951/
http://www.physi.uni-heidelberg.de/~menzemer/Stat0708/statistik_vorlesung_1.pdf
https://indico.cern.ch/event/713464//
https://indico.cern.ch/event/147827/contributions/178940/attachments/144135/204413/Dorigo_CHIPP_part1.pdf
https://indico.cern.ch/event/147827/contributions/178940/attachments/144135/204413/Dorigo_CHIPP_part1.pdf
https://indico.cern.ch/event/243641/
https://indico.fnal.gov/event/9596/
https://indico.fnal.gov/event/9596/
https://pdg.lbl.gov/2022/reviews/rpp2022-rev-statistics.pdf
http://www.pp.rhul.ac.uk/~cowan/sda/
https://link.springer.com/book/10.1007/978-0-387-84858-7
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527410589.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527410589.html
http://ieeexplore.ieee.org/document/6382200/?reload=true&tp=&arnumber=6382200
http://ieeexplore.ieee.org/document/6382200/?reload=true&tp=&arnumber=6382200

Outline

Alternative title could be
|

“Practical statistics for physicists”

Four lectures

> Lectures 1 & 2 - Introduction to data analysis (orel.gueta@desy.de).
> Lecture 3 & 4 - Dan Parsons - Machine Learning Techniques.
Outline

Introduction

Probability and statistical distributions

Parameter and uncertainty estimation

Bayesian vs Frequentist

Hypothesis testing

VVVYVYVYV

Monte Carlo methods

« Slightly biased towards particle physics
|

Please feel free to stop me and ask questions!
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Introduction

Data analysis in physics involves a lot of probability and statistics.
> Quantum phenomena is probabilistic in nature.

> So is the particle interaction with the detector (e.g., air shower
fluctuations). ~

/
Ll
> Theory only provides probabilities (e.g., Higgs decay channels). §

> Analyze large amounts of data and compare to probabilities.

> Utilize Monte Carlo methods to simulate probabilistic

e d
@
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phenomena.
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Introduction

Where is data analysis used?

e
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Measure a known parameter and its
uncertainty (mass of the Z boson).

Events / GeV

Discover new phenomena (Higgs,
~-ray/neutrino source).

Test your theory against the data
(hypothesis testing).

Extract as much as possible from data
(experiments are expensive!)

PRI I RS SI S
™% 80 100

> . : : : : :
> E
O gso0py,, ATLAS ¢ Daa VERITAS
g 3000; ——— Sig+Bkg Fit (m,=126.5 GeV)
2 E Bkg (4th order polynomial)
9 2500F- s
20005~ 8
15005~ <
1000~ 157 Tev, fL=4 81 5
500~ (5=8 TeV, fLat=5.9fb* H-yy K]
E , , , , , E a
g 208 e
100E E
P +++++;¢Tv‘\¢,‘“‘_‘,n e
8 -100 :+ ¢ ¢
W -200E- =
100 10 120 130 140 150 160 23"300  2325'  23"200  23M%

my, [GeV] Right ascension (J2000)
Orel Gueta | DESY | August 3 & 4, 2023 | Page 5




Silly example



Introduction - cheating baker

Simple example of data visualization.
A restaurant owner orders 30 rolls every day.
The law in the country states that rolls must weigh ~ 75 grams;

After changing suppliers, the owner suspects that the new baker sells
underweight rolls

Investigate! Weigh the rolls (1 gram resolution).

Raw list of weights is not very useful.
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Introduction - cheating baker

A friend suggests to reduce the data,
combine the measurements, taking into account resolution;

assume the rolls are produced independently, e.g., neglect changes from
week to week.

Weight [50] @ Weight[51]
Weight[55] = @ Weight[56]
Weight[60] = 13 Weight[61]
Weight [65] 42 Weight[66]

Weight [52] Weight[53]
Weight [57 Weight [58]
Weight [62 Weight [63]
Weight [67 Weight[68]
Weight[72 Weight[73]
Weight [77 Weight[78]
Weight [82] Weight[83]
Weight [87] Weight [88]

Weight [54]
Weight [59]
Weight [64]
Weight [69]
Weight [74]
Weight[79]
Weight [84]
Weight [89]

Weight[70] = 75 Weight[71]
Weight[75] = 49 Weight[76]
Weight [80] 10 Weight[81]
Weight[85] = 1 Weight[86]

Can see that the majority of rolls weigh less than 75 grams.
Easier to understand the data this way, but still far from perfect.

Better idea to visualize the data?

Orel Gueta | DESY | August 3 & 4, 2023 | Page 7



Introduction - cheating baker

Visualize the data with a histogram,
> immediately grasp the distribution of weights;
> mean and standard deviation clearly visible.
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> New baker definitely cheating, rolls are about 5 grams too light.
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Introduction - cheating baker

> The owner complains to the baker.

> The baker promises to correct their ways — The restaurant owner keeps
monitoring.
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Introduction - cheating baker

> The owner complains to the baker.
> The baker promises to correct their ways — The restaurant owner keeps
monitoring
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Introduction - cheating baker

> The owner complains to the baker.

> The baker promises to correct their ways — The restaurant owner keeps
monitoring
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> A month later the owner sees the baker is still cheating, sending the
restaurant the heaviest rolls and selling the light ones to others. /6A

ol
| DESY
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Statistical distributions



Statistical distributions

Gaussian
Measurements typically follow a distribution,
identifying it could be important

= correct determination of parameters;

<
S
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> uncertainties estimation;

> for results interpretation (see example later).

Binomial
0.25 0.40
—— p=02,N=20 —u=1
=== p=0.6 N=20 0.35 -=- u=5
o204 [\ p=06,N=40 | e u=15
0.30 1
_ 015+ 0.251
2 3
2 < 0.20
& Q
a
0.10 1 0154
0.10 1
0.05 1
0.05
0.00 . — 0.00 47 . : -
25 30 35 0 15 20 25 an

k
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Binomial distribution

Experiment has two outcomes,

OH GOAD, A TRUE OR AT LAST, SOME CLAR\TY! EVERY

FALSE TESTY | SENTENCE \S EVTHER PURE,

SWEET TRUTH OR A VILE,

CONTEMPTIBLE LIE! ONE

OR THE OTHER! NOTHING
IN BETWEEN /

© 1957 Wasters0+ D b by Universal Press Syacicato

For N “coins”, each with prob. of “success” p,

P(k;p, N) p (1 —p)" "

k!
k(N — k)
is the prob. of k successes.
> What is the prob. to roll 34 times out of 100 throws?

> Selection or reconstruction efficiency (prob. to reconstruct 560 +'s with
p =0.63 and N = 10?).
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Binomial distribution

Characteristics,
> Expectation value (mean, ), E[k] = 3", kP(k) = Np.

Intuitive, e.g., calculate for 8 coin flips.

Take into account when dealing 0.25
with efficiencies — p=02,N=20
=== p=0.6, N=20
> ROOT includes various options to o204 [\ p=0.6, N=40
use binomial errors for efficiency
(e.g., TEfficiency). Similar 0154
tools exist for R and Python. 2
s e ; 0.10
Limiting cases, :
> For N— o0, p—0
Np = const., 0051
Binomial — Poisson.
0.00 & —
25 30 35

> For N — oo, p = const.,
Binomial — Gaussian.
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Poisson distribution

Prob. of N independent events occurring in time interval At with constant

rate [,
N

P(N; ) = Lre ™

> Expectation value, E[N] = 3", NP(N) = p. Variance, 0* = p.

Where do we run into this dist.?
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Poisson distribution

Prob. of N independent events occurring in time interval At with constant

rate [,
N

AN L
P(Ny /’L) - me
> Expectation value, E[N] = 3", NP(N) = p. Variance, 0* = p.
Where do we run into this dist.?

> Number of decay events per
second from a radioactive source;
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Poisson distribution

Prob. of N independent events occurring in time interval At with constant
rate [,

> Expectation value, E[N] = >, NP(N) = p. Variance, 0° = p.

Where do we run into this dist.? 0.40

> Number of decay events per
second from a radioactive source;

> Number of “rare” interactions
occurring per bunch crossing at
LHC;

> Number events in a histogram
bin.

— typical, N £ +/N (what about
0+ 07).

. . 0 :
When p — oo, Poisson — Gaussian. p -
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Importance of distribution identification

Example - evidence of quarks in air showers.

Researchers observed a track with 110 bubbles
(average expected is 229, 55,000 tracks in total).

They assumed (correctly) bubble formation is a
Poisson-distributed quantity.

Probability of observation P ~ 10712,
Particles with fractional charge!
In fact,

each scatter of a charged particle off a nucleus
produces ~4 droplets.

Both particle scattering and bubble formation are
Poisson processes.

Need to use a compound Poisson distribution.
P to observe one 110 bubble track, P ~ 5-1075;
Observing one such track out of 55,000, P ~ 92%.

EVIDENCE OF QUARKS IN AIR-SHOWER CORES*

C. B. A, McCusker and L Cairns
Cornell-Sydney University Astronomy Center, Physics Department, The University of Sydney, Sydney, Australia

(Received 3 September 1969)
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http://www.science20.com/quantum_diaries_survivor/free_quarks_dont_be_fooled-84364

Gaussian distribution

Probably the most common distribution (thanks to Central Limit Theorem),

1 1 _G=w?
P(x;p,0) = ——e 207

> Expectation value, E[x] = p.

~ Variance, % = 2.

> At x=pt0, Yy = Ymax/veE ~ 0.606 X Ymax.

03 04

Probability content often used
> [T P(x; o) dx = 68.2%;
> [T P(x; o) dx = 95.4%

0,2

0,0 01

lo 20 30

-30 -20 -lo

u
= etc. 68.2%

95.4%

99.7%
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Central Limit Theorem

Idea:
> pick k random variables from 1.2
P . < 0.9
any distribution Q(x); 206
03
> repeat N times and calculate 0.0
mean (or sum) between the 2.0 =3
variables; 151
210
—- the distribution of the mean 0.5
values will be Gaussian. 0.0 7
* Q(x) should be well defined. ig N=3
lllustration: & 127
0.6
> Uniform Q(x); 0.0
> Gaussian is shown for ;= 0.5 44 N=10
and o = 1/V12N; 23]
Q
> Already for N = 10, Gaussian ;)
distribution observed. 0.0000  0.2000  0.4000  0.6000  0.8000
X
> Larger N for non-uniform Q(x).
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Central Limit Theorem

Idea:
. . N=1
> pick k random variables from 247
any distribution Q(x); = (1)»:‘ ‘/\
> repeat N times and calculate 0.0 T : : :
mean (or sum) between the =3
variables; 24
Z 161
= the distribution of the mean 0.8
values will be Gaussian. 0.0
# Q(x) should be well defined. 44 N=5
—_ 3 B
Illustration: %2
14
> Parabolic Q(x); 0
> Gaussian is shown for = 0.75 8 N=20
_ : < 6
and o = o(N)/VN; Z,]
> Requires N = 20 to obtain g" ' ' ' :
Gaussian distribution. 0.0000  0.2000  0.4000  0.6000  0.8000  1.0000
X
> Try it yourselves!
R
( DESY )
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A few extra comments on distributions

Other characteristics,
> Mode (most-probable value)
> Median (or more generally k-quantiles)

Symmetric Non-symmetric
0.045 0.16
—-=-- Mean = Median=Mode | [ A Mean
0.040 [ Gauss(u =100, o =10) 0.14 4 === Median
—— Mode
0.0351 0.12 = (N =5)
0.030 0.101
0.025 4
= = 0.08
Q S
0,020
0.06
0.015 1
0.04 4
0.010 1
0.02 4
0.005 4
0.00
0.000 - T T T T T T T T T
60 80 100 120 00 25 50 75 100 125 15.0 17.5 20.0
x X

Have not mentioned so far,
= continuous or discrete distributions;

> cumulative distributions.
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Parameter and uncertainty
estimation



Parameter estimation - least square fit

Data: x;,y; + o, Theory: y = ax + b.

> Parameter determination.
> Goodness of fit.
Least square fit -

=Y, ((ax,--l-:)—y,-)2 :

+ not really x* (convention).

> Linear = minimize analytically
3= i) i—) < " i
> (= (x))2 Y
b= (y)—a(x)
« When o — o, perform numerically, assuming
normally distributed uncertainties.

(a)

46
Uncertainties

> with enough data, x? usually parabolic; 455 b
> o5 =2/ (d*x*/d6?) i (A

25 26 2j7 2:8 29
> scan parameter space for = P
X2 (9) = X%in (ebest) + ]-; @\E‘f;
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Uncertainties

Suppose result/theory = 0.970, does the theory describe the data?
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Uncertainties

Suppose result/theory = 0.970, does the theory describe the data?
0.970 4+ 0.05 0.970 + 0.005 0.970 + 0.5
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Uncertainties

Suppose result/theory = 0.970, does the theory describe the data?
0.970 £ 0.05 0.970 £ 0.005 0.970 £ 0.5

Statistical uncertainties Systematic uncertainties

Random in nature. Usually originate in the instrument.
Fluctuates independently per Bias the data by unknown
L ~constant offset.

Unavoidable. Hard to detect, correct for,
Usually, more data — lower estimate.

uncertainty (o< V' N). e.g., miscalibration, diff. between
e.g., counting statistics, electronic data and simulation, simulation
noise, etc. statistics, etc.

o(tot.) = o (stat.) ® o (syst.)
Report uncertainties separately (sometimes diff. syst. contributions).
Pick your battles.
Take into account theoretical uncertainty.
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Uncertainty propagation

df (x)
dx

Assume y = f(x) = o, = - Ox

X=X
> Taylor expansion approximation, small uncertainty.

With more variables, f(xi,x2, ... ,xn), take correlation into account

Z of of
Ox; 3x,

Xi; Xj
X=X
> V. is the covariance of x;, x; (see later).
> Correlated variables lead to increased uncertainty.
> Opposite for anti-correlated.
examples
> y=X1— X2 = Uf :afl —I—Uf2 —2- Vi xo-
> y =x{-xJ, fractional uncertainties are useful (uncorr.)
2 2 2
9y — Ix1 Ixg
= () = (%) + (5%)
> Sometimes easier numerically (uncorr.)
yi =Ff(x1 4 0x, X2, ..., xn), Y2 = f(x1,X2 + Oxy, ..., Xn), €tC.
2 2 2 2
oy ==+ -y + .+

Orel Gueta | DESY | August 3 & 4, 2023 | Page 21
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Quick examples - LS

Calibrate detectors

> E, = a1 - Eaero, + @2 - Eagro, + @3 - EpcaL

> obtain E, from beam energy and other calibrated detector.
= for all data available, minimize

N 3 Y\2
2 (Z':1 ajEjn— E)
=) 5

n=1 EY

not to scale

ZEUS HERA SPEC SPEC
magnets eXIL dipole AERO PCAL

window

. i

40000
—— Calibration with AEROGEL

30000~ —— PcaLony

20000

10000

0 B 5 %
EYAGeVJ
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Quick examples - LS

Estimate contributions from signal/background,

> minimize to get optimal relative fractions
D=(1-FfH1 + H2

> both model and data are binned and have uncertainties

= can only be done numerically (ROOT, Minuit).
x10°
0 B e L A
S 80 -
<) 00<f <01 1
%] F sDPS 4
.;':j i ATLAS B —4- Data 2010
5 [ Vs=7TeV, 37 pb™* 1 e SPS (AHJ)
t 1 — - cDPS (data, overlay)
P ] ---- sDPS (data, overlay)
L ] B Fit distribution (stat. uncertainty)
r 1 = Fit distribution (stat. + sys. uncertainty)
20(~ B Anti-k, jets, R = 0.6
[ — p#242.5 GeV
S 14 i p>** > 20 GeV
8 12 T
= 0_1 |n1‘2.3‘4|54'4
T A O U |
0 0.2 0.4 0.6 0.8 1
1 2
@Esops + \/EECDPS
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Goodness of fit

In the least squares case, straightforward

> determine x2;, and number of degrees of freedom, v = n — p;

> check probability based on x? distribution (TMath: :Prob(chi2, ndf)).
« usually referred to as p-value, prob. to find x? > x2i, (see later)

> Rule of thumb, x3; = x?/v =~ 1.

¥2 probability density function x? cumulative distribution function

< <<
LI L (I
~u N e

<

plx|v)
P(x|v)
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Quick example - goodness of fit

Check if brightness of star varies with time

11

i
|

4=9.99 x2,;=0.24(-3.80)

Luminosity
=
o

=
=

Luminosity
=
o

(correct errors]

(overestimated errors)

i =9.99 x2,;=0.96 (=0.20)

|
|

underestimated errors

ty ptd

} Wy
"m";*t;ﬁrﬁ*"##mt*-m*;‘#-

¢

[(=9.99 x3:=3.84(140)

incorrect model

[1=10.16 x3,=2.85(9.10)

observations

Orel Gueta | DESY | August 3 & 4, 2023 | Page 25

observations

&
DESY

A

Y



Kolmogorov—Smirnov test

Test if distributions originate from the same underlying PDF.
Search for largest difference between cumulative distributions.
Useful with small amounts of data (can be used as goodness of fit).

Fast, non-parametric, sensitive to differences in location and shape of
cumulative distributions.

Example - automatic testing of simulation output distributions.

1 J‘_, ’
= _,_r'_r'
= 08 m Z ,-"_HJJ_
= = 08
@ 2 d
=] ©
S o6 S i
a - & 06
2 ® JJ"
5 04 T 04 (o
= / z
S il g
O 02 3 02
0 o o
4 2 0 2 4 4 2 0 2 4
X X
2 .
X~ also available <o
(DESY )
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Probability:
Bayesian vs Frequentist



Brief intro to probability

Axioms (Kolmogorov):

> P(A)eR, P(A) >0, VAecQ(Qisthe event space).

> fn P(A)dA =1, i.e., Unitarity, prob. that at least one event will occur is 1.
> if P(AN B) =0, then P(AU B) = P(A) + P(B).

Conditional probability:

> P(A|B) = 2452

~ How likely is an event to occur, A “degree of belief” that an event
based on many repeatable trials. will happen.
— Not applicable to a single event. ~ Includes previous knowledge in it
~ Objective statement. (prior).
P(BJA) P(A
P(A) = limp,,,.—c0 ﬁ Bayes theorem - P(A|B) = %
40\
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Bayesian vs Frequentist

Frequentist
= Probability of data given a model, P(datajmodel).

+ “Frequentist statistics gives the probability to observe
data under a given hypothesis, it says nothing about the
probability of the hypothesis to be true”.

Bayesian

= Probability of model given data, P(model|data).

> P(model|data) x P(data|model) x P(model) « prior.

—» could be previous measurements;

— might be subjective;

— functional form not always known (necessary?);
— what if there is no knowledge?

Prior examples

> Physics is “smooth”.
= mass squared of neutrino.
> ‘“extraordinary claims require extraordinary evidence".

Orel Gueta

DD THE SN USTE@LD)II’?

(ITS NIGHT, 50 WERE NOT

DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.
THEN, ITROWS TWO DICE. IF THEY'
BOTH COME UP S, ITUES TOUS.

u:rsw
slvmmm i

MiM
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Covariance and correlation



Covariance and correlation

Consider measurements depending on
more than one variable (observable).

> What is prob. for A and B?

> P(A)=f(x)dx, P(B) = f(y)dy =
P(ANB) = f(x, y)dxdy.

> The joint prob. f(x,y) corresponds
to the density of points (N — o).

> If not interested in y dependence
— project.

« Profiling (see later)

0.5 T T T T

©

03 q

02 =

01 -

Orel Gueta

T T
| - event A
event B
L L
0 2 4 6 8
X
SA 05 — T T T
hd (®)
04 - g
03 b
02 | k
01 R
N L L
o 2 4 6 8 10
Yy
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Covariance and correlation

How correlated are x and y?

= Covariance

> Following the definition of 1D variance,
V(x) = of = El(x = (x))*] = E[x*] = (E[x])*;

= Cxy) = Viy = Ellx = () (v = ()] = Elxy] — EIXJE[y].

If x and y uncorrelated,
> P(ANnB)=P(A)- P(B).
> flxy) = f(x) - f(y).

Remember uncertainty propagation?
with y = f(x)

N
2 _ N\~ Of Of .
Oy = z ax; Oxj | _ VXi’XJ'
isj X=X

notice C = V,  is covariance matrix.

Orel Guet:

y
. .
2 . L
st Fet .
RISl DA
1 ve o ‘_" “'-"-."):. . :
Ce R ey
DAY PRI 1 AN
0l . “-J.’: % “"»‘.' S
L e O
P T 34 e ..
e DR e
IR o o6 LA
=1 .« Le, el Al FUNL A
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_3‘ ° -
-2 -1 0 1 2
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Covariance and correlation

The dimensionless Pearson’s correlation coefficient

C(x
pey = (x,¥)
Ox0y
0.4 0.8 ~1.0
« does not measure slope.
1.0 1.0 1.0 ~1.0 ~1.0 ~1.0
,."/.4 ,“/ o ,,.—""’ T ‘--"“\“_ ‘\\\\ \\\.

+ Test linear correlation/anti-correlation. Always plot your data!
0.0 0.0 0.0 0.0 0.0 0.0 0.0
?@’%
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Example - 2D Gaussian

P(X) = %\/ﬁe){p (—sF-pTC ' (x-m)

2 2
for x=(x,y) = C= ( x paxzay) = (\jx Vxéy>
X,y

pPOxOy o, oy
Gy=0y, p=0 26,=0y, p=0
*@” ("
2 0 2 2 0 2
X X
oy=0y, p=0.75 26,=0y, p=0.75
Ymﬁ (-]
2 0 2 2 0 2
X X
oy=0y, p=-0.75 20,=0y, p=-0.75
’“ >0+ ’h > o %
] o ! S o %
2 0 2 2 0 2
X X
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Covariance and correlation

How to deal with correlated variables?
> If one of the variables is not used or cannot measure — project.

> Bin the data (profiling), issues with this method?

10

-
<

> Variable transformation. B
(0@2
{ /D/ES{
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Principal component analysis

Perform orthogonal linear transformation, each component (variable)

maximizes variance.
Process (X is data matrix),

> diagonalize the X7 X matrix, calculate eigenvectors and eigenvalues;

> the (ordered) eigenvectors are the new observables;

> the variance “score” is given by the eigenvalues.

Some comments

~ Covariance, C o< X X.

> First n components embody majority of

information.

= Can be used to reduce dimensionality.

X2

> Often one of the first steps in multi-variate

analysis.

> Useful only for linearly correlated variables

(non-linear options available).

> Various tools available (ROOT,
scikit-learn, R).

Orel Gueta

Largest Principal o
Component

Smallest Principal
Component
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Parameter estimation - Maximum likelihood

Maximum likelihood for parameter determination.
> Assume we observe N independent events, y;.
> The hypothesis to check has a PDF, p(y,0), where 0 is param.

N
> Events are independent, combine prob as £(8) =[] p(yi, ).

» calculate £(6) for all 6 values (fixed y;).
> L(0) is at maximum when 6 = Oyre.
6 — . , . 6 — , . v v

— log L=41.2 (ML fit) (a) —— logL=139 (b)
--- log L=41.0 {true parameters) --- logL=189

F@x)
f@x)
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Maximum likelihood

Conventional to instead minimise —2 - In £(0)

N
> InL(8) = p(yi,0) (numerically easier).

Confidence interval
> InL(6y £0)=InL(O) —1/2 (also

> For —2-InL(f) - —2-AInL(#) = 1.

When £(8) is ~Gaussian

T 525
= confidence interval of ~68% for 6. Tg’,.
> could be asymmetric.
-53
If £(6) "“very" non-Gaussian
= revert to Neyman confidence
interval (will not cover).
-53.5
Goodness of fit
> Not straightforward, at large N
2
—2-AlnL(0) = x ==
(Wilks' theorem).
> Toy Monte Carlo.
Orel Gueta

d?1n £(6)
do? ).

i-AT 1 T+ AT,
log L., 1
log Ly, - 12 4
1 1
1.2 1.4 1.6
T és‘si\;
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Quick example - MLE

Lifetime determination (L. Lyons)
dn
dt
> Observed decays tj = t1, t2, ... , tn.
« neglecting background, time smearing, etc.
Construct likelihood

_t . .
= Le77; (normalization, 1).
T T

> Radioactive decay,

N Ny
— n i I 4
> L) =11(&), =11re 7. 010
1 1
N
X 0.08 -
> InL(r)=Y (-%—InT1).
i
dinL(r) _ o e 7%
n T) __ o1y =
> dr - Z (7—’2 'r) =0. Iq,
1 I~ 0.04 1
N
= T=3 5 =(t). .
i 0.02
Uncertainty estimation
N 0.00
d?InL(r 2¢; 1 : : . : : ,
> T():—Z(j’-i-jz):o- 0 20 40 . 60 80 100
1
. _ T H 1 /e @2
= o0, = -~ (notice - dependency). (Besy
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Hypothesis testing

Use likelihood for hypothesis testing, often formulated as
> Null hypothesis, Ho, (e.g., Standard Model only).
> Alternative hypothesis, H; (e.g., Standard Model + new physics).

Composite hypothesis
Simple hypothesis compare L(Ho(60)) and L(H1(0)).

Calculate L(Ho(0)) = Usually likelihood ratio is used.
> decide if data is likely for Hop ~ More sensitive to H.
(p-value). . .
~ Based on p-values, which H; is more
> If not, claim discovery (of what?) likely.
- Exis.tence of a particle (Higgs, new — Particle with certain mass, width,
particle) coupling constants.
~+ A new y-ray source. — Position and spectra of y-ray
source.

(&
DESY
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Hypothesis testing - exclude H,

Types of errors:
False positive (Type-1 error): wrongly reject Hy (no new physics).

False negative (Type-2 error): wrongly accept Hy (missed new physics in

data).
True State of Nature
Hp is true Hy is false
Do not reject Hp | Correct decision |  Type Il error
Our Decision -
Reject Hy Type | error | Correct decision

Define the probabilities

Type-1 error rate (significance «)
a= [ p(x|Ho)dx

X>X0

i.e., probability of the data given Hy (familiar?).

relation to p-value in next slides.

»\
A
=/

/g
(
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Hypothesis testing - exclude H,

Gaussian example

> Assume PDF is Gaussian distributed around po and we measure .
> The p-value is the probability to measure p or higher.

>« is the probability to measure C’ or higher.

> Compare p-value to «, decide to accept/exclude Ho.

Hyipu>po

[ <

| S

! I

| o S)

I H ~

| S 34.1% 34.1%|

| x

#o c 3
L B

- <

#o L Reject Hy s

> One-sided p-value (or a) at 50 = 3-107".
> Sometimes both tails need to be taken into account (a/2).

« See relation to goodness of fit? .
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p-value

p-values not only for Gaussian distributions
0.40

o u=1 x? probability density function

< <

N0 N e

|
i
< <

0.25

0.20

p(kl)
plx|v)

0.15

0.10

0.05

0.00 47

15 20 25 30
P(p=5,n>13) = 0.001 P(v =5,x > 20.5) = 0.001

Convention

> Convert p-value from any PDF to equivalent one-sided Gaussian o.

> Does not mean PDF is Gaussian, simply easier to remember.
> p-value is P(data|Hp), it is not P(Ho|data).

(a0
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Hypothesis testing

For comparing Hy & H:, Neyman-Pearson Lemma
= Likelihood ratio test is optimal discriminant (assuming no free parameters).

Log Likelihood ratio £ = —21In (%)

If H;(0), use simulation to generate distributions of ¢ for H;.
Take measurement and calculate ¢ after maximizing £ for both H;(0).
Calculate both p-values, decide which H; to accept.

0.08 4
0.07 1
0.06 -
0.05 4

% 0.04
0.03 1
0.02 1

0.0119

0.00 1

10 20 30 40 50 60 70 80

More complicated in reality. (40
Orel Gueta | DESY | August 3 & 4, 2023 | Page 42 ey



Exclusion limit (simplified)

Assume Hy = background (SM) and H; = background + signal.

> Number of events (cross-section) observed is Poisson distributed.
> From p-values, accept Hp.

Set limit

> Find the maximum signal strength for which p(H:) < 5%.

> Set limit on signal at 95% confidence level (exclusion, 20).

6 2‘0 4‘0 6‘0 8‘0 160
N
« Usually based on the likelihood ratio test statistics.
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Higgs discovery

> Visible bump in the data.

> For H — v+, background fitted with a smooth distribution.
> Complicated background in H — 4¢.

Events /2 GeV

Events - Bkg

> ¢
8 a0 2:/::2011;2012 ATLAS
s ] iggs Boson &

i T T % o5 [ m,=124.3 GeV (fit H_>7Z'I'ZV_I>L4dI1
soo, ATLAS ¢ oas e PL [eagounazzz (270 fLat -
3000~ Sig+Bkg Fit (m 21265 Gev) w r [ Background Z+jets, - -

E o ™, Bkg (4th order polynomial) 301 7 systUnc.
2500 F
2000F- 251
1500 S £
1000/ V5=7 Tev, fLat=4.81t* S 201~

500- (5=8 Tev, [Ldt=5 91b* H-yy E r
E ‘ ‘ ‘ ‘ ‘ E 5
2005 > E
1005 E £
o +++++$%Tyn\qs+ et b 10
-100 ;+ ¢ ¥ [
-200E E 5
100 110 120 130 140 150 160
my, [GeV]

460"
20.7 fo!
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Discovery/Exclusion

> local p-value of observed Higgs signal (signal stronger than expected).

> Search for massive scalar decaying to two ~, not found

= set an upper limit on the cross-section (x branching ratio).

0

Local p

g

é‘ve)‘(pectedp“
—_ Observeg ATLAS

Data 2011 (s = 7 TeV

— Obs. 2011
-Exp. 2011

-Exp. 2012

— Obs. 2012 \V

/
~]
T
l Ldt=4.8 1"
| o

ata 2012 Vs =8 TeV
=207f"

3\\H\wHw\HH\Hww\mm\uu\mm\uuF

95% CL Upper Limit on gy, x BR [fb]

115

120 125 130 135 140 145 150

m, [GeV]

Orel Gueta

—— —
[ —— Observed CL, limit
10° ? ------ Expected CL, limit
= [ Expected + 1o
L [ Expected + 20
10
1
107

ATLAS Preliminary
Vs=13TeV, 15.4 fo
Spin-0 Selection
y/m,=10%

P S B
500 1000
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Higgs spin

> Use likelihood ratio g = —21n (52:::7::83) to determine Higgs spin.
'é\ :TTTTNTTTTNTTTTNTTTTNTTTTNTTTT:
c L B
>0.25- ATLAS —Data
; H - ZZ* & 4' P At
0 02 s=7TeV fLdt=46fb" 7=0
‘® [ (s=8TeV [Ldt=2071b" - =0
E
20.15

0.1

0.05

— \nﬂ'ﬂ-\ - | - LJ

|
15 -10 -5 0 5 10 15
q Py

| DESY
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Look elsewhere effect

Bump hunting? Peaks can be anywhere!

> Increase p-value to take into account (quote local and global p-value).
> Correction roughly width mass interval divided by width particle.

> Confirmation from other experiment is crucial.

Consider amount of searches at any given time.

S
m

3 E ATLAS El > T T T T
ERN + Daam 1 ¢ TLAS = Background model
S g - S s=gTev, 203" — background model
3 ° E —— Background-only fit 3 S - — 15TeVEGM W, c=1
5 F . " B > 20TeVEGM W, c=1
& 10 Spin-2 Selection - H — 25TeVEGMW, c=1
E E| g S Te
E _ 1 E| S —— Significance (stat)
F Vs=13Tev, 321 7 w B Significance (stat + syst)
10 E WZ Selection
E F +
1? El
107 —
o B ]
2 E E
2 1% E " =
8 5E | 8 3F
5 E E S 2F
2 o ] S X
s 3 & 1 ]
3 -10F] 3 ""2—""\HH\HH\HH\HHs\—
06 400 600 BOO 1000 1200 1400 1600 1800 2000 : : m. [Tev]
m,, [GeV] i
Remember the track with 110 bubbles? o
| DESY )
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Look elsewhere effect

Also in searches for y-ray sources
Usually referred to as trials factor.

Include also cuts in the correction (not always easy).

VERITAS

Declination (J2000)

23"30'  23"25' 2320 23"5'
Right ascension (J2000)
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Blind analysis

The first principle is that you must not fool yourself — and you are the easiest
person to fool

CMS Preliminary Ns=7TeV,L=5.05f";ys=8TeV,L=526 1"

> [ i
8 12 ]
Whenever possible, perform blind analysis N 10: ]
@ 10 ]
> Keep the “signal box" closed. g, [ ]
> Construct and refine analysis on Hoe ]
simulation, cannot change after ok E
unblinding. r
> Use only part of the data available. 4
2
0

80 100 120 140 160 180
my [GeV]
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Blind analysis

The first principle is that you must not fool yourself — and you are the easiest

person to fool

Whenever possible, perform blind analysis

>
>

V

Keep the “signal box" closed.

Construct and refine analysis on
simulation, cannot change after
unblinding.

Use only part of the data available.
Add random numbers to results.

Use fake signal to test procedure (done
at LIGO).

Ball number

! 1
-0.5 -0.333

i
|
f
i
e ‘*'L“{_h'L'E“TF_‘_{'

0.5
Residual charge (e)
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https://www.ligo.org/news/blind-injection.php
https://www.ligo.org/news/blind-injection.php

The 50 criteria

Probability of fluctuation of 5¢ is less than
1 in a million, tiny!

This was not always the case (and is
not in other fields).

Strain (10?")

A lot more data these days.

Sometimes hard to estimate look
elsewhere effect.

Underestimated systematic
uncertainties?

o
=
£
©
8
S
w

A discovery of new physics will be a
game changer, better not take it back.

BayeSIa n priOI’ "I LIGO Livingston Data

0.35 0.40
extraordinary claims require extraordinary Time (sec)
evidence

Strain (10%")
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Monte Carlo methods

Wikipedia: “computational algorithms that rely on repeated random sampling
to obtain numerical results.”

Useful for, e.g.,

Numerical integration.

Simulating particle interactions or decay.

Uncertainty estimation.

Example: estimate 7

=1) = 4.0000, error = 0.8584

=10) = 3.6000, error = 0.4584

100) = 3.3600, error = 0.2184
=1000) = 3.1240, error = 0.0176
10000) = 3.1264, error = 0.0152
=100000) = 3.1433, error = 0.0017
=1000000) = 3.1402, error = 0.0014

i_print = [1, 10, 100, 1000, 10000, 100000, 1000000]
for 1 in range(0,n+1):
x=random()
y=randonm()
if sqrt(xexiysy) <=1
e

d) = %.4f, error = %.4f' % (i, piNow, abs(piNow - pi)))
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Monte Carlo integration

Simple numerical integration

> Divide range to small pieces of known area and sum.

> Suffers from curse of dimensionality, Neae = n°.

Similar to 7 estimate example, can sample function at random points.

> Avoids curse of dimensionality of numerical integration, error o< 1/v/N.
> Works for any function (including discontinuous ones).

> Faster at large d.

> Used in e.g., phase-space integration of matrix elements.

f(z) f(z)dz f(z) / ' f(z)d

a T; b
To=a z1 E23 z3 z4=b '
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Bootstrap method

Assume N measurements of x, x;, how to estimate i, + 0,7
Not easy to estimate o, without knowing PDF of x.

> Usually there is no access to the “true” PDF.

= The distribution of x; is best approximation of it.

True PDF (skewed Gaussian)

1000 measurements

0.14

0.12

0.10

0.08

Entries

0.06

0.04 4

0.02 4

1401

1201

1004

80 -

Entries

60 -

40+

201

0.00
60

65

70

75

80

85

90

95

100 60 65 70 75 80
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Bootstrap method

Entries

> Can generate “new” measurements by sampling from x;.

> Each iteration sample events from the 1000 measurements, allowing

repetition.

> Calculate uy for “new” distribution.

1000 measurements

140 A

120 A

100 A

80 1

60

40

20 A

60

Entries

Sample of 1000 events (one bootstrap iteration)

140

1201

1004

80 1

60 -

404

20 A

04
60

65

70

75

80
X

85

90

95

100
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Bootstrap method

Entries

> Obtain a distribution of p by repeating 50,000 times.

> For comparison, perform 50,000 experiments using true PDF, each with

1000 events.
= oy, from bootstrap reproduces that from independent experiments.

2000

1750

1500

1250

1000

750

500

250

Mean values with 50000 bootstrap iterations

78.4

x Toy MC
# Can be used in numerical estimation of uncertainties
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Bootstrap method

While making the plots, encountered interesting case,
> In 1st trial, saw a bias between p, distributions (not significant, but still).

> Spread was OK — test by changing random seed when performing first
“measurement” of 1000 events.

> With different random seed, no more bias and same o,

Two samples of 1000 measurements Different orig. random distribution for bootstrap
[ 1st Bootstrap 200091 4, =78.785 [ Original PDF
1401 [ 2nd Bootstrap 1750 o,, = 0.103 [ 1st Bootstrap
1, = 78.686 1 2nd Bootstrap
120 A
1500 0.103
100 7
1250
] 3
= 801 £ 1000
i &
601 750
40 500
20 A 250
0 v T T T v T
60 65 78.4 78.6 78.8 79.0 79.2
x Hx
e
%%
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Event classification

Significant part of data analysis, classifying between events.
> Define decision boundaries (cuts).
> Requires prior information (usually from simulation).

> Can it be done "visually”? Usually too many observables/classes.
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Event classification

Various ways to deal with it (see 3rd lecture about machine learning)
> If observables not highly correlated, can define cuts in bins.
> Many algorithms available to optimize cuts
(e.g., linear discriminant analysis, kNN, SVM, BDT, ANN).
— LDA is similar to Principal Component Analysis, but it maximizes
separability between event classes.

)

Maximizes distance between means and minimizes overlap.

)

Can be used to reduce dimensionality and optimize cut hyperplane.
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Event classification

> Use data with known labels to train discriminant, apply later to “real” data.

> Can expand space to 5d = X1, X2, X1 - X2, X2, X2 to obtain non-linear
hyperplanes using linear method.

+ Transformed observables useful also for non-linear methods (e.g., log E).
+ Take care when using “automatic” classifiers, study results carefully.
« Consider systematic uncertainties when selecting observables.
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Unfolding

What is unfolding?

The process of correcting the data for detector effects

A measured distribution is
affected by

>

>

>

Inefficiencies in the detector
— lost events.

Bias — if (x) is true mean,
measure (x') = (x) + Ax.

Smearing — the detector
has finite resolution.

Simple example,

>
>
=

known efficiency function.
no bias or smearing.

correct each bin for
fractional loss of events.

Not really unfolding

Entries

T3 >
L 4 Recodata 1 2
B )
600 — Corrected data| '©
r 1.
L —0.8
400 —0.6
= —0.4
200— B
I -0.2
L
910 -5 0 5 0

X
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Unfolding

In practice, given a measured histogram yt,

data data Rdata . Xdata

> want to obtain “true” distribution x“*, where y =
> The matrix R,-jj-ata is the response function of the detector.
> Inefficiencies contribute to diagonal elements — per-bin correction;

> bias and smearing to off-diagonal — bin migration.

How to derive R4??

>

. . 400
> In simulation we have all necessary — observed histogram y
information. 350 --- true distribution £ ()
MC MC MC MC 300 1 statistical fluctuation
y =R - x"", where R is our > migration | limited acceptance
detector simulation. 250 « non-linear response
Assume R%% = RM¢ — R 200 / B
. . 150 ;
Notice that in general, 100 7 RN
dat MC
y ata ;é y , ‘_-/, -
Xdata 75 XMC, 50 bt L T
but should be close. 0
0.0 0.5 1.0 1.5 2.0
Can we then simply use variables s, ¢
Xdata — R71 . ydata? ‘/‘i/
\/I‘)/ES{}
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Unfolding

Unfolding is an ill-posed problem measured and reconstructed histogram
= With finite statistics, 180
. . . 160
naive unfolding fails. 140 + “I” +
N L 120
> Leads to significant statistical 100 }
fluctuations between bins. 80
) 60
— Negative correlation coefficients 40 [T measured histogram
between adjacent bins. 20 {|— predicted measured histogram

0 100 200 300 400 500 600 700 800 900
(a) y

unfolding result and true histogram

— Positive coefficients between
next-to-nearest neighbours.

How to deal with fluctuations? 1500
Regularization — true histogram
) . . 1000
> Increase weight of “smoother
solutions, damp oscillations. 500
> Unfold iteratively using Bayes 0
theorem (will not cover). 500

Various tools available, e.g., (b) 0 100 200 300 400xSOO 600 700 800 900
RooUnfold. \
DESY
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Unfolding

Regularized unfolding

The unfolding problem can be written as a minimization of (simplified)

X2 (Xdata) — (R . Xdata _ ydata)T(R ) Xdata

L is regularization matrix (second derivative commonly used).

Second term dampens oscillations.

T is regularization parameter,

if 7 is too small — oscillations;

data

if 7 is too large — x“*° too smooth

and biased towards XMC;

Depends on number of events and
binning.

Some trial & error to choose 7.

Usually chosen using (independent)
MC samples.

Detector-level Bin Number

Orel Gueta

_ ydata) + 7_(Lxdata)T(Lxdata)

| I |
2 4 6 10 12 14

Particle-level Bin Number
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Entries

Unfolding

1200

1000]

80

2
3
3 S

IS
8
S

Over-regularized

Correctly-regularized

Under-regularized

‘ . —+- [‘)ata reco ]
—#— Unfolded data |
** _paatue ]
MC true
MC reco
Kieg=3

X

Entries

1000

200

* Notice, ydata 7éyMC’ Xdata 7éXMC

Why do we bother?

> Allows to compare directly to theoretical models and among experiments.

> “Future proof” the data.

T
—$-Datareco o

1%
~4- Datareco 2 L
—4-Unfolded data| | § 1000 —4— Unfolded data |
— Datatrue L — Data true
MC true = MC true
MC reco 4
Kieg = 10 ]
] 500
o
0 5 To -10 -5 0 5 To
X X
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Unfolding vs folding

Folding (or forward folding) is another option

> Instead of correcting data, publish it with corresponding R.

> The problem is then technically simpler,
X2(Xthe0(9)) — (R A XtheO(e) _ ydata)T(R . Xthe0(9) _ ydata).
in the case where x™*°() is the model one wants to test.

> Avoids unfolding issues (ill-defined problem, converting statistical
uncertainties to systematic ones).

Issues with folding

>

>

Does not allow comparison
between experiments.

Harder to test your model
against data from various
experiments.

03¢

0251

energy resolution

0.2

0151

01f

log,, (E /TeV)
= o
e

°
o

o

10
energy [TeV]

When possible, unfold.

Orel Gueta
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Extended MLE

The production rate depends on mass of a particle, need to estimate both?
Extended MLE (Poisson process, PDF f(x;;0))
L(x;v,0) = “re™ ﬁ f(x:;0)
maximize with respect to both 6 and v (prolfile likelihood).

Improved precision of fitted parameters obtained if 6 and v are correlated
(e.g., 0 = particle mass).

0
Nice example in Data Analysis in 0.1 |
High Energy Physics book é 02
) = S
PDF, f(xi; 1) = G(1). = 03 |
Parameter of interest is p. C04 |
Assume v = 9e (=7, ~ 05 & ;
. . = ’ —— standard NILE }
Simulate events with fitre = 7. 0.6 extonded MLE |
Perform profile likelihood to -0.7 ‘ g

obtain more precise fi.

64 66 68 7
i

)
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Extended MLE and nuisance parameters

Can be used to include uncertainties in likelihood fit

> Assume signal and background contributions S and B.

> Try to estimate S, include Gaussian uncertainty on background B — 6B,
L(N; S,0) = SHB (St G() _ 1 4y)

> Background is constrained to our best guess (6 = 1), with a o spread.

> Maximize L to estimate S while marginalizing 6.

L e
—$— data
— S+B
—— Background

Mo,

In reality can become complex

Entries

> Estimate various parameters of S and B sooor

simultaneously (e.g., particle mass).

> S and B affected by various uncertainties 20001
(many nuisance parameters). i

> Divide data to various regions where

different uncertainties contribute. 1000

* Use tools to build models and perform fit, r
e.g., RooFit, ctools, Gammapy. 0 5 10 15

[ R R

o8\
9\

)
2

\&
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Summary

Statistics is everywhere in physics
Lectures can get a bit abstract — learn by doing.

Likely that your problem was solved already somewhere else, consult books
and the web before reinventing the wheel.

Use software packages as much as possible (ROOT, RooFit, various Python
tools, etc.)

Subjects not covered but worth reading about
Confidence intervals, coverage and limit setting.
Dealing with systematic and theory uncertainties.
Estimating contributions through templates and control regions.
Combining results.

Many more.

e-mail: orel.gueta@desy.de
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