Introduction to data analysis

DESY summer school 2023

Orel Gueta

DESY

August 3 & 4, 2023

Acknowledgements and further reading

A lot of inspiration taken from the following lectures:

- > Louis Lyons Practical Statistics for Physicists.
- > Stephanie Hansmann-Menzemer Modern Methods of Data Analysis.
- > Andreas Hoecker Foundations of statistics.
- Tommaso Dorigo Statistics Topics for Data Analysis in Particle Physics: an Introduction.
- > Kyle Cranmer Practical Statistics for Particle Physics.
- Thomas Junk Data Analysis and Statistical Methods in Experimental Particle Physics.

Books:

- Particle data group statistics review concise, contains almost everything.
- > Glen Cowan Statistical data analysis.
- > Trevor Hastie et al. The Elements of Statistical Learning.
- Olaf Behnke et al. Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods.
- J. VanderPlas et al. Introduction to astroML: Machine learning for astrophysics

Outline

Alternative title could be

"Practical statistics for physicists"

Four lectures

- Lectures 1 & 2 Introduction to data analysis (orel.gueta@desy.de).
- > Lecture 3 & 4 Dan Parsons Machine Learning Techniques.

Outline

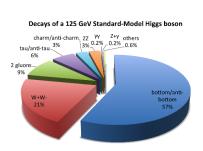
- > Introduction
- > Probability and statistical distributions
- > Parameter and uncertainty estimation
- > Bayesian vs Frequentist
- > Hypothesis testing
- > Monte Carlo methods
- * Slightly biased towards particle physics

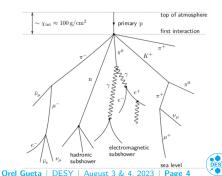
Please feel free to stop me and ask questions!

Introduction

Data analysis in physics involves a lot of probability and statistics.

- Quantum phenomena is probabilistic in nature.
- So is the particle interaction with the detector (e.g., air shower fluctuations).
- Theory only provides probabilities (e.g., Higgs decay channels).
- Analyze large amounts of data and compare to probabilities.
- Utilize Monte Carlo methods to simulate probabilistic phenomena.

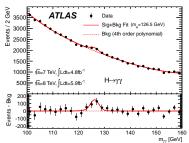


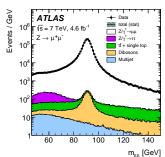


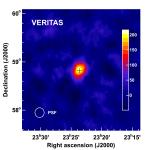
Introduction

Where is data analysis used?

- Measure a known parameter and its uncertainty (mass of the Z boson).
- > Discover new phenomena (Higgs, γ -ray/neutrino source).
- Test your theory against the data (hypothesis testing).
- ⇒ Extract as much as possible from data (experiments are expensive!)







Silly example

Simple example of data visualization.

- > A restaurant owner orders 30 rolls every day.
- > The law in the country states that rolls must weigh \sim 75 grams;
- After changing suppliers, the owner suspects that the new baker sells underweight rolls
- ⇒ Investigate! Weigh the rolls (1 gram resolution).

Raw list of weights is not very useful.

A friend suggests to reduce the data,

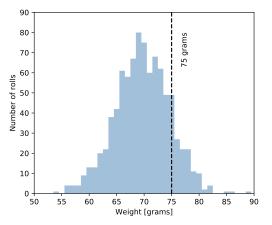
- > combine the measurements, taking into account resolution;
- > assume the rolls are produced independently, e.g., neglect changes from week to week.

```
Weight[50] = 0 Weight[51] = 0 Weight[52] = 0 Weight[53] = 0 Weight[54] = 1 Weight[55] = 0 Weight[56] = 4 Weight[57] = 4 Weight[58] = 4 Weight[59] = 9 Weight[60] = 13 Weight[66] = 13 Weight[66] = 61 Weight[67] = 58 Weight[68] = 22 Weight[64] = 38 Weight[65] = 42 Weight[66] = 61 Weight[67] = 58 Weight[68] = 67 Weight[69] = 80 Weight[70] = 75 Weight[71] = 60 Weight[72] = 68 Weight[73] = 62 Weight[74] = 49 Weight[75] = 49 Weight[75] = 27 Weight[77] = 22 Weight[73] = 22 Weight[79] = 11 Weight[80] = 10 Weight[81] = 2 Weight[82] = 4 Weight[83] = 0 Weight[84] = 0 Weight[85] = 1 Weight[86] = 1 Weight[87] = 0 Weight[88] = 0 Weight[89] = 1
```

- > Can see that the majority of rolls weigh less than 75 grams.
- > Easier to understand the data this way, but still far from perfect.
- > Better idea to visualize the data?

Visualize the data with a histogram,

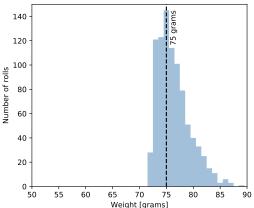
- > immediately grasp the distribution of weights;
- > mean and standard deviation clearly visible.



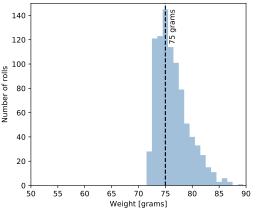
> New baker definitely cheating, rolls are about 5 grams too light.

- > The owner complains to the baker.
- > The baker promises to correct their ways \rightarrow The restaurant owner keeps monitoring.

- > The owner complains to the baker.
- > The baker promises to correct their ways → The restaurant owner keeps monitoring



- > The owner complains to the baker.
- > The baker promises to correct their ways \rightarrow The restaurant owner keeps monitoring



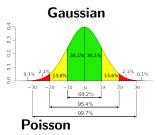
A month later the owner sees the baker is still cheating, sending the restaurant the heaviest rolls and selling the light ones to others.

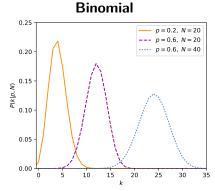
Statistical distributions

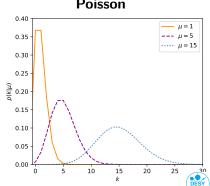
Statistical distributions

Measurements typically follow a distribution, identifying it could be important

- > correct determination of parameters;
- > uncertainties estimation;
- > for results interpretation (see example later).

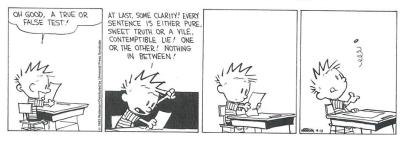






Binomial distribution

Experiment has two outcomes,



For N "coins", each with prob. of "success" p,

$$P(k; p, N) = \frac{k!}{k!(N-k)!} p^{k} (1-p)^{N-k}$$

is the prob. of k successes.

- > What is the prob. to roll 🔢 34 times out of 100 throws?
- > Selection or reconstruction efficiency (prob. to reconstruct 560 γ 's with p=0.63 and $N=10^3$).

Binomial distribution

Characteristics,

- > Expectation value (mean, μ), $E[k] = \sum_k kP(k) = Np$.
- > Variance (σ^2) , $E[(k \langle k \rangle)^2] = E[k^2] (E[k])^2 = Np(1 p)$.

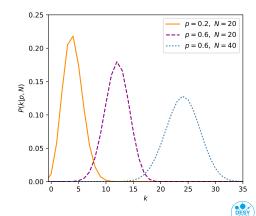
Intuitive, e.g., calculate for 8 coin flips.

Take into account when dealing with efficiencies

> R00T includes various options to use binomial errors for efficiency (e.g., TEfficiency). Similar tools exist for R and Python.

Limiting cases,

- > For $N \to \infty$, $p \to 0$ Np = const., Binomial $\to \text{Poisson}$.
- > For $N \to \infty$, p = const., Binomial $\to \text{Gaussian.}$



Poisson distribution

Prob. of N independent events occurring in time interval Δt with constant rate $\mu,$

$$P(N;\mu) = \frac{\mu^N}{N!}e^{-\mu}$$

> Expectation value, $E[N] = \sum_{N} NP(N) = \mu$. Variance, $\sigma^2 = \mu$.

Where do we run into this dist.?

Poisson distribution

Prob. of N independent events occurring in time interval Δt with constant rate $\mu,$

$$P(N;\mu) = \frac{\mu^N}{N!}e^{-\mu}$$

> Expectation value, $E[N] = \sum_{N} NP(N) = \mu$. Variance, $\sigma^2 = \mu$.

Where do we run into this dist.?

> Number of decay events per second from a radioactive source;

Poisson distribution

Prob. of N independent events occurring in time interval Δt with constant rate μ ,

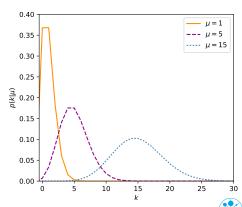
$$P(N;\mu) = \frac{\mu^N}{N!}e^{-\mu}$$

> Expectation value, $E[N] = \sum_{N} NP(N) = \mu$. Variance, $\sigma^2 = \mu$.

Where do we run into this dist.?

- > Number of decay events per second from a radioactive source;
- Number of "rare" interactions occurring per bunch crossing at LHC:
- Number events in a histogram bin.
- \rightarrow typical, $N \pm \sqrt{N}$ (what about 0 ± 0 ?).

When $\mu \to \infty$, Poisson \to Gaussian.



Importance of distribution identification

Example - evidence of quarks in air showers.

- Researchers observed a track with 110 bubbles (average expected is 229, 55,000 tracks in total).
- > They assumed (correctly) bubble formation is a Poisson-distributed quantity.
- \Rightarrow Probability of observation $P \sim 10^{-13}$.
- ⇒ Particles with fractional charge!

In fact,

- > each scatter of a charged particle off a nucleus produces ∼4 droplets.
- Both particle scattering and bubble formation are Poisson processes.
- ⇒ Need to use a compound Poisson distribution.
- > P to observe one 110 bubble track, $P \approx 5 \cdot 10^{-5}$;
- > Observing one such track out of 55,000, $P\sim92\%$.

EVIDENCE OF QUARKS IN AIR-SHOWER CORES*

Gaussian distribution

Probably the most common distribution (thanks to Central Limit Theorem),

$$P(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

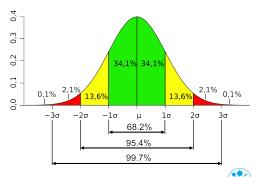
- > Expectation value, $E[x] = \mu$.
- > Variance, $\sigma^2 = \sigma^2$.
- > At $x = \mu \pm \sigma$, $y = y_{\text{max}}/\sqrt{e} \sim 0.606 \times y_{\text{max}}$.

Probability content often used

$$> \int_{-\sigma}^{+\sigma} P(x; \mu, \sigma) dx = 68.2\%;$$

$$> \int_{-2\sigma}^{+2\sigma} P(x; \mu, \sigma) dx = 95.4\%$$

> etc.



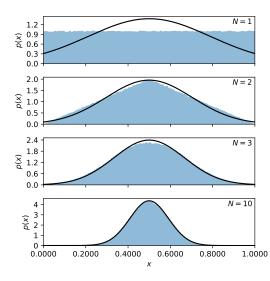
Central Limit Theorem

Idea:

- > pick k random variables from any distribution Q(x);
- repeat N times and calculate mean (or sum) between the variables;
- ⇒ the distribution of the mean values will be Gaussian.
 - * Q(x) should be well defined.

Illustration:

- > Uniform Q(x);
- > Gaussian is shown for $\mu=0.5$ and $\sigma=1/\sqrt{12N}$;
- > Already for N=10, Gaussian distribution observed.
- > Larger N for non-uniform Q(x).



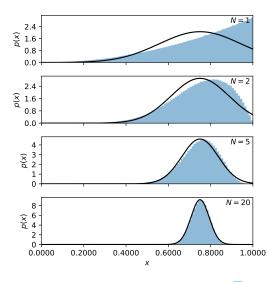
Central Limit Theorem

Idea:

- > pick k random variables from any distribution Q(x);
- repeat N times and calculate mean (or sum) between the variables;
- ⇒ the distribution of the mean values will be Gaussian.
 - * Q(x) should be well defined.

Illustration:

- \rightarrow Parabolic Q(x);
- > Gaussian is shown for $\mu=0.75$ and $\sigma=\sigma(\textit{N})/\sqrt{\textit{N}};$
- > Requires N = 20 to obtain Gaussian distribution.
- Try it yourselves!

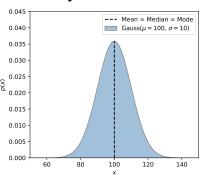


A few extra comments on distributions

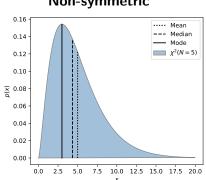
Other characteristics.

- > Mode (most-probable value)
- > Median (or more generally k-quantiles)

Symmetric



Non-symmetric



Have not mentioned so far,

- > continuous or discrete distributions;
- > cumulative distributions.

Parameter and uncertainty estimation

Parameter estimation - least square fit

Data: $x_i, y_i \pm \sigma$, Theory: y = ax + b.

- > Parameter determination.
- Soodness of fit.

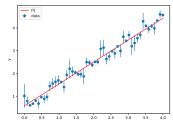
Least square fit

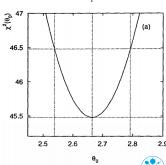
$$\chi^2 = \sum_i \left(\frac{(ax_i + b) - y_i}{\sigma} \right)^2$$

- * not really χ^2 (convention).
- > Linear \Rightarrow minimize analytically $a = \frac{\sum_i (x_i \langle x \rangle)(y_i \langle y \rangle)}{\sum_i (x_i \langle x \rangle)^2}$ $b = \langle y \rangle a \langle x \rangle$
- * When $\sigma \to \sigma_i$, perform numerically, assuming normally distributed uncertainties.

Uncertainties

- > with enough data, χ^2 usually parabolic;
- $> \sigma_{\theta}^2 = 2/\left(d^2\chi^2/d\theta^2\right)$
- > scan parameter space for $\chi^2(\theta) = \chi^2_{\min}(\theta_{\text{best}}) + 1$;





Uncertainties

Suppose result/theory = 0.970, does the theory describe the data?

Uncertainties

Suppose result/theory = 0.970, does the theory describe the data?

 0.970 ± 0.05 0.970 ± 0.005 0.970 ± 0.5

Uncertainties

Suppose result/theory = 0.970, does the theory describe the data?

 0.970 ± 0.05

 0.970 ± 0.005

 0.970 ± 0.5

Statistical uncertainties

- > Random in nature.
- > Fluctuates independently per measurement.
- > Unavoidable.
- > Usually, more data \rightarrow lower uncertainty $(\propto \sqrt{N})$.
- e.g., counting statistics, electronic noise, etc.

Systematic uncertainties

- > Usually originate in the instrument.
- Bias the data by unknown ~constant offset.
- Hard to detect, correct for, estimate.
- e.g., miscalibration, diff. between data and simulation, simulation statistics, etc.

$$\sigma(\mathsf{tot.}) = \sigma(\mathsf{stat.}) \oplus \sigma(\mathsf{syst.})$$

- > Report uncertainties separately (sometimes diff. syst. contributions).
- > Pick your battles.
- > Take into account theoretical uncertainty.

Uncertainty propagation

Assume
$$y = f(x) \Rightarrow \sigma_y = \frac{df(x)}{dx} \Big|_{x = \bar{x}} \cdot \sigma_x$$

> Taylor expansion approximation, small uncertainty.

With more variables, $f(x_1, x_2, \ldots, x_N)$, take correlation into account

$$\sigma_y^2 = \sum_{i,j}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \Big|_{x=\bar{x}} \cdot V_{x_i,x_j}$$

- $> V_{x_i,x_i}$ is the covariance of x_i,x_j (see later).
- > Correlated variables lead to increased uncertainty.
- Opposite for anti-correlated.

examples

>
$$y = x_1 - x_2 \Rightarrow \sigma_y^2 = \sigma_{x_1}^2 + \sigma_{x_2}^2 - 2 \cdot V_{x_1, x_2}$$
.

>
$$y = x_1^{\alpha} \cdot x_2^{\beta}$$
, fractional uncertainties are useful (uncorr.)

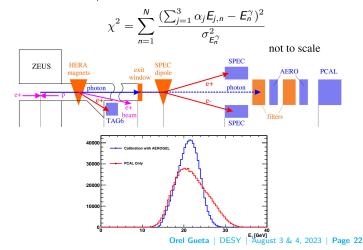
$$\Rightarrow \left(\frac{\sigma_y}{y}\right)^2 = \left(\alpha \frac{\sigma_{x_1}}{x_1}\right)^2 + \left(\beta \frac{\sigma_{x_2}}{x_2}\right)^2.$$

> Sometimes easier numerically (uncorr.)
$$y_1 = f(x_1 + \sigma_{x_1}, x_2, \dots, x_N), y_2 = f(x_1, x_2 + \sigma_{x_2}, \dots, x_N), \text{ etc.}$$
 $\sigma_y^2 = (y - y_1)^2 + (y - y_2)^2 + \dots + (y - y_N)^2.$

Quick examples - LS

Calibrate detectors

- $> E_{\gamma} = \alpha_1 \cdot E_{AERO_1} + \alpha_2 \cdot E_{AERO_2} + \alpha_3 \cdot E_{PCAL}$
- > obtain E_{γ} from beam energy and other calibrated detector.
- > for all data available, minimize



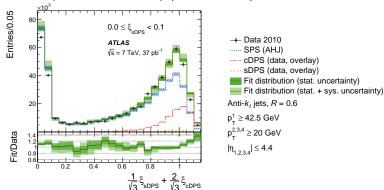
Quick examples - LS

Estimate contributions from signal/background,

> minimize to get optimal relative fractions

$$\mathcal{D} = (1 - f)\mathcal{H}_1 + f\mathcal{H}_2$$

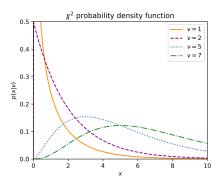
- > both model and data are binned and have uncertainties
- \Rightarrow can only be done numerically (ROOT, Minuit).

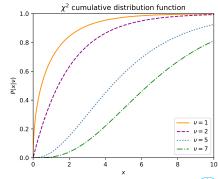


Goodness of fit

In the least squares case, straightforward

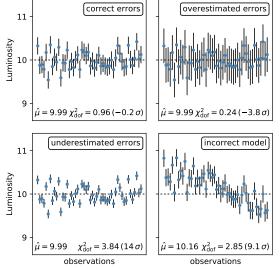
- > determine χ^2_{\min} and number of degrees of freedom, $\nu=n-p$;
- > check probability based on χ^2 distribution (TMath::Prob(chi2, ndf)).
- * usually referred to as p-value, prob. to find $\chi^2 > \chi^2_{\rm min}$ (see later)
- > Rule of thumb, $\chi^2_{\rm dof} = \chi^2/\nu \approx 1$.





Quick example - goodness of fit

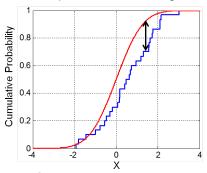
Check if brightness of star varies with time

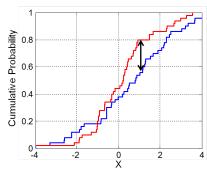


Kolmogorov-Smirnov test

Test if distributions originate from the same underlying PDF.

- > Search for largest difference between cumulative distributions.
- Useful with small amounts of data (can be used as goodness of fit).
- > Fast, non-parametric, sensitive to differences in location and shape of cumulative distributions.
- > Example automatic testing of simulation output distributions.





* χ^2 also available

Probability: Bayesian vs Frequentist

Brief intro to probability

Axioms (Kolmogorov):

- $> P(A) \in \mathbb{R}, \quad P(A) \ge 0, \quad \forall A \in \Omega \text{ (}\Omega \text{ is the event space)}.$
- $>\int_{\Omega}P(A)dA=1$, i.e., Unitarity, prob. that at least one event will occur is 1.
- > if $P(A \cap B) = 0$, then $P(A \cup B) = P(A) + P(B)$.

Conditional probability:

$$> P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Frequentist

- How likely is an event to occur, based on many repeatable trials.
- > Not applicable to a single event.
- > Objective statement.

$$P(A) = \lim_{n_{\mathsf{trials}} \to \infty} \frac{n_A}{n_{\mathsf{trials}}}$$

Bayesian

- A "degree of belief" that an event will happen.
- Includes previous knowledge in it (prior).

Bayes theorem -
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Bayesian vs Frequentist

Frequentist

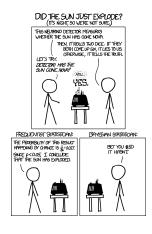
- \Rightarrow Probability of data given a model, P(data|model).
- * "Frequentist statistics gives the probability to observe data under a given hypothesis, it says nothing about the probability of the hypothesis to be true".

Bayesian

- \Rightarrow Probability of model given data, P(model|data).
- $> P(\mathsf{model}|\mathsf{data}) \propto P(\mathsf{data}|\mathsf{model}) \times P(\mathsf{model}) \leftarrow \mathsf{prior}.$
 - → could be previous measurements;
 - \rightarrow might be subjective;
 - → functional form not always known (necessary?);
 - $\rightarrow\,$ what if there is no knowledge?

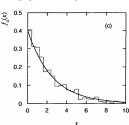
Prior examples

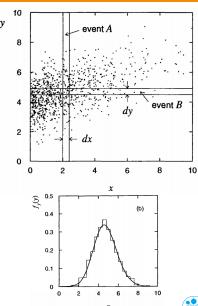
- > Physics is "smooth".
- > mass squared of neutrino.
- "extraordinary claims require extraordinary evidence".



Consider measurements depending on more than one variable (observable).

- What is prob. for A and B?
- > P(A) = f(x)dx, $P(B) = f(y)dy \Rightarrow$ $P(A \cap B) = f(x, y)dxdy$.
- > The joint prob. f(x, y) corresponds to the density of points $(N \to \infty)$.
- If not interested in y dependence
 → project.
- * Profiling (see later)





How correlated are x and y?

- ⇒ Covariance
- > Following the definition of 1D variance, $V(x) = \sigma_x^2 = E[(x \langle x \rangle)^2] = E[x^2] (E[x])^2$;
- $> C(x,y) = V_{x,y} = E[(x \langle x \rangle)(y \langle y \rangle)] = E[xy] E[x]E[y].$

If x and y uncorrelated,

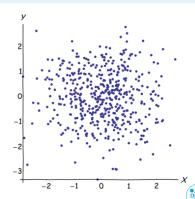
$$> P(A \cap B) = P(A) \cdot P(B).$$

$$> f(x,y) = f(x) \cdot f(y).$$

Remember uncertainty propagation? with y = f(x)

$$\sigma_y^2 = \sum_{i,j}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \Big|_{x=\bar{x}} \cdot V_{x_i,x_j}$$

notice $C = V_{x_i,x_i}$ is covariance matrix.



The dimensionless Pearson's correlation coefficient

$$\rho_{x,y} = \frac{C(x,y)}{\sigma_x \sigma_y}$$

0.0

-0.8

does not measure slope.

1.0

1.0

$$-1.0$$

$$-1.0$$

Test linear correlation/anti-correlation. Always plot your data!

Example - 2D Gaussian

$$P(\vec{x}) = \frac{1}{2\pi\sqrt{\det(C)}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})^T C^{-1}(\vec{x} - \vec{\mu})\right)$$
for $\vec{x} = (x, y) \Rightarrow C = \begin{pmatrix} \sigma_x^2 & \rho\sigma_x\sigma_y \\ \rho\sigma_x\sigma_y & \sigma_y^2 \end{pmatrix} = \begin{pmatrix} \sigma_x^2 & V_{x,y} \\ V_{x,y} & \sigma_y^2 \end{pmatrix}$

$$\sigma_x = \sigma_y, \ \rho = 0$$

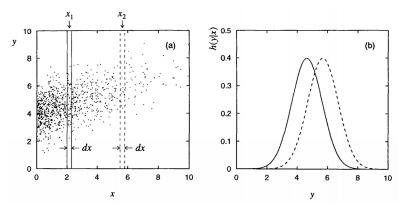
$$\sigma_x = \sigma_y, \ \rho = 0.75$$

$$\sigma_x = \sigma_y, \ \rho = 0.75$$

$$2\sigma_x = \sigma_y, \ \rho = 0.75$$

How to deal with correlated variables?

- > If one of the variables is not used or cannot measure \rightarrow project.
- > Bin the data (profiling), issues with this method?



Variable transformation.

Principal component analysis

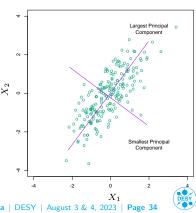
Perform orthogonal linear transformation, each component (variable) maximizes variance.

Process (X is data matrix),

- > diagonalize the X^TX matrix, calculate eigenvectors and eigenvalues;
- the (ordered) eigenvectors are the new observables;
- the variance "score" is given by the eigenvalues.

Some comments

- Covariance. $C \propto X^T X$.
- First *n* components embody majority of information
- Can be used to reduce dimensionality.
- Often one of the first steps in multi-variate analysis.
- Useful only for linearly correlated variables (non-linear options available).
- Various tools available (ROOT, scikit-learn, R).

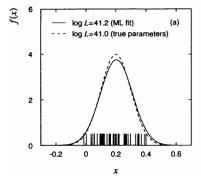


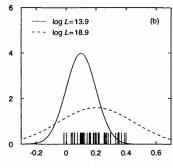
Hypothesis testing

Parameter estimation - Maximum likelihood

Maximum likelihood for parameter determination.

- > Assume we observe N independent events, y_i .
- > The hypothesis to check has a PDF, $p(y, \theta)$, where θ is param.
- > Events are independent, combine prob as $\mathcal{L}(\theta) = \prod_{i}^{N} p(y_i, \theta)$.
- \rightarrow calculate $\mathcal{L}(\theta)$ for all θ values (fixed y_i).
- > $\mathcal{L}(\theta)$ is at maximum when $\theta=\theta_{\mathrm{true}}.$





Maximum likelihood

Conventional to instead minimise $-2 \cdot \ln \mathcal{L}(\theta)$

 $> \ln \mathcal{L}(\theta) = \sum_{i}^{N} p(y_i, \theta)$ (numerically easier).

Confidence interval

$$> \ln \mathcal{L}(\theta_0 \pm \sigma) = \ln \mathcal{L}(\theta_0) - 1/2$$
 (also $\frac{d^2 \ln \mathcal{L}(\theta)}{d\theta^2}$).

> For
$$-2 \cdot \ln \mathcal{L}(\theta) \rightarrow -2 \cdot \Delta \ln \mathcal{L}(\theta) = 1$$
.

When $\mathcal{L}(\theta)$ is \sim Gaussian

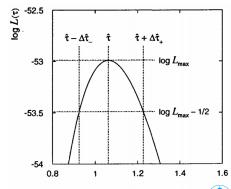
- \Rightarrow confidence interval of \sim 68% for θ .
- > could be asymmetric.

If $\mathcal{L}(\theta)$ "very" non-Gaussian

⇒ revert to Neyman confidence interval (will not cover).

Goodness of fit

- > Not straightforward, at large N $-2 \cdot \Delta \ln \mathcal{L}(\theta) \rightarrow \chi^2$ (Wilks' theorem).
- > Toy Monte Carlo.



Quick example - MLE

Lifetime determination (L. Lyons)

- > Radioactive decay, $\frac{dn}{dt} = \frac{1}{\tau} e^{-\frac{t}{\tau}}$; (normalization, $\frac{1}{\tau}$).
- > Observed decays $t_i = t_1, t_2, \ldots, t_N$.
 - neglecting background, time smearing, etc.

Construct likelihood

$$> \mathcal{L}(\tau) = \prod_{i}^{N} \left(\frac{dn}{dt}\right)_{i} = \prod_{i}^{N} \frac{1}{\tau} e^{-\frac{t_{i}}{\tau}}.$$

$$> \ln \mathcal{L}(\tau) = \sum_{i}^{N} \left(-\frac{t_i}{\tau} - \ln \tau \right).$$

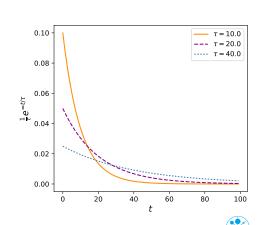
$$> \frac{d \ln \mathcal{L}(\tau)}{d \tau} = \sum_{i}^{N} \left(\frac{t_i}{\tau^2} - \frac{1}{\tau} \right) = 0.$$

$$\Rightarrow \tau = \sum_{i=1}^{N} \frac{t_i}{N} = \langle t_i \rangle.$$

Uncertainty estimation

$$> \frac{d^2 \ln \mathcal{L}(\tau)}{d\tau^2} = -\sum_{i}^{N} \left(\frac{2t_i}{\tau^3} + \frac{1}{\tau^2}\right) = 0.$$

$$\Rightarrow$$
 $\sigma_{ au} = rac{ au}{\sqrt{N}}$ (notice $rac{1}{\sqrt{N}}$ dependency).



Hypothesis testing

Use likelihood for hypothesis testing, often formulated as

- > Null hypothesis, H_0 , (e.g., Standard Model only).
- > Alternative hypothesis, H_1 (e.g., Standard Model + new physics).

Simple hypothesis

Calculate $\mathcal{L}(H_0(\theta))$

- > decide if data is likely for H_0 (p-value).
- > If not, claim discovery (of what?)
- → Existence of a particle (Higgs, new particle)
- \rightarrow A new γ -ray source.

Composite hypothesis

compare $\mathcal{L}(H_0(\theta))$ and $\mathcal{L}(H_1(\theta))$.

- > Usually likelihood ratio is used.
- More sensitive to H₁.
- > Based on *p*-values, which *H_i* is more likely.
- Particle with certain mass, width, coupling constants.
- \rightarrow Position and spectra of γ -ray source.

Hypothesis testing - exclude H_0

Types of errors:

- > False positive (Type-1 error): wrongly reject H_0 (no new physics).
- > False negative (Type-2 error): wrongly accept H_0 (missed new physics in data).

		True State of Nature	
		H ₀ is true	H ₀ is false
Our Decision	Do not reject H ₀	Correct decision	Type II error
	Reject H ₀	Type I error	Correct decision

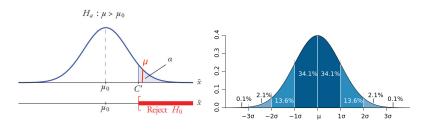
Define the probabilities

- > Type-1 error rate (significance α) $\alpha = \int_{x \ge x_0} p(x|H_0) dx$
 - i.e., probability of the data given H_0 (familiar?).
- \rightarrow relation to *p*-value in next slides.

Hypothesis testing - **exclude** H_0

Gaussian example

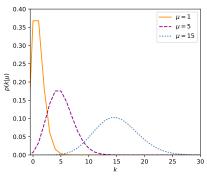
- > Assume PDF is Gaussian distributed around μ_0 and we measure μ .
- > The p-value is the probability to measure μ or higher.
- $> \alpha$ is the probability to measure C' or higher.
- > Compare *p*-value to α , decide to accept/exclude H_0 .



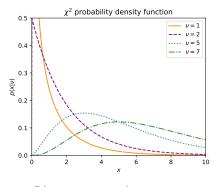
- > One-sided *p*-value (or α) at $5\sigma = 3 \cdot 10^{-7}$.
- > Sometimes both tails need to be taken into account $(\alpha/2)$.
- * See relation to goodness of fit?

p-value

p-values not only for Gaussian distributions



$$P(\mu = 5, n \ge 13) = 0.001$$



 $P(\nu = 5, x \ge 20.5) = 0.001$

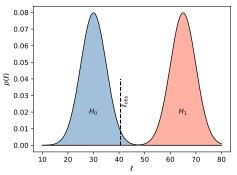
Convention

- > Convert p-value from any PDF to equivalent one-sided Gaussian σ .
- > Does not mean PDF is Gaussian, simply easier to remember.
- > p-value is $P(\text{data}|H_0)$, it is **not** $P(H_0|\text{data})$.

Hypothesis testing

For comparing H_0 & H_1 , Neyman-Pearson Lemma

- ⇒ Likelihood ratio test is optimal discriminant (assuming no free parameters).
- > Log Likelihood ratio $\ell = -2 \ln \left(\frac{\mathcal{L}(\mathsf{data}, H_1)}{\mathcal{L}(\mathsf{data}, H_0)} \right)$.
- > If $H_i(\theta)$, use simulation to generate distributions of ℓ for H_i .
- > Take measurement and calculate ℓ after maximizing \mathcal{L} for both $H_i(\theta)$.
- > Calculate both p-values, decide which H_i to accept.



More complicated in reality.

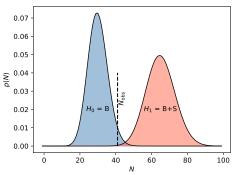
Exclusion limit (simplified)

Assume $H_0 = \text{background (SM)}$ and $H_1 = \text{background} + \text{signal}$.

- > Number of events (cross-section) observed is Poisson distributed.
- > From p-values, accept H_0 .

Set limit

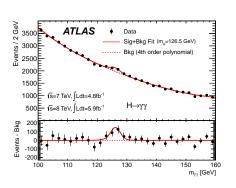
- > Find the maximum signal strength for which $p(H_1) < 5\%$.
- > Set limit on signal at 95% confidence level (exclusion, 2σ).

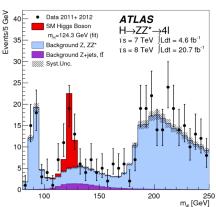


Usually based on the likelihood ratio test statistics.

Higgs discovery

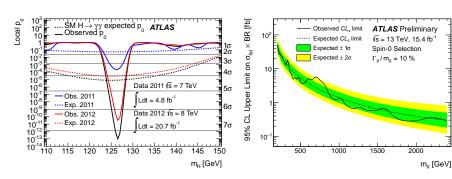
- Visible bump in the data.
- > For $H o \gamma \gamma$, background fitted with a smooth distribution.
- > Complicated background in $H \rightarrow 4\ell$.





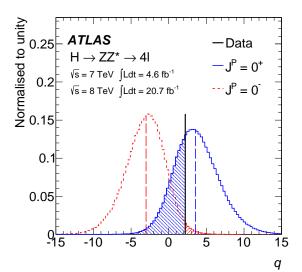
Discovery/Exclusion

- > **local** p-value of observed Higgs signal (signal stronger than expected).
- > Search for massive scalar decaying to two γ , not found
- \Rightarrow set an upper limit on the cross-section (\times branching ratio).



Higgs spin

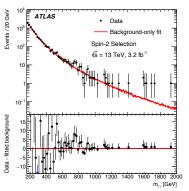
> Use likelihood ratio $q=-2\ln\left(rac{\mathcal{L}(\mathsf{data},0^+)}{\mathcal{L}(\mathsf{data},0^-)}
ight)$ to determine Higgs spin.

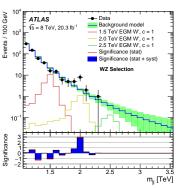


Look elsewhere effect

Bump hunting? Peaks can be anywhere!

- Increase p-value to take into account (quote local and global p-value).
- > Correction roughly width mass interval divided by width particle.
- > Confirmation from other experiment is crucial.
- * Consider amount of searches at any given time.



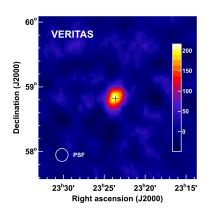


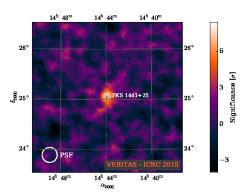
* Remember the track with 110 bubbles?

Look elsewhere effect

Also in searches for γ -ray sources

- * Usually referred to as trials factor.
- > Include also cuts in the correction (not always easy).





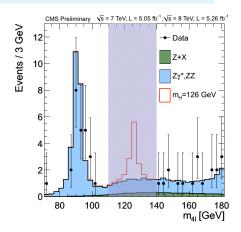
Blind analysis

R. Feynman

The first principle is that you must not fool yourself — and you are the easiest person to fool

Whenever possible, perform blind analysis

- > Keep the "signal box" closed.
- Construct and refine analysis on simulation, cannot change after unblinding.
- > Use only part of the data available.



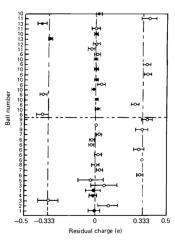
Blind analysis

R. Feynman

The first principle is that you must not fool yourself — and you are the easiest person to fool

Whenever possible, perform blind analysis

- > Keep the "signal box" closed.
- Construct and refine analysis on simulation, cannot change after unblinding.
- Use only part of the data available.
- Add random numbers to results.
- Use fake signal to test procedure (done at LIGO).



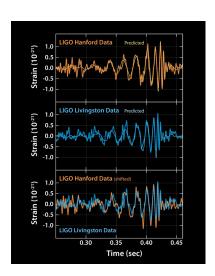
The 5σ criteria

Probability of fluctuation of 5σ is less than 1 in a million, tiny!

- > This was not always the case (and is not in other fields).
- > A lot more data these days.
- Sometimes hard to estimate look elsewhere effect.
- > Underestimated systematic uncertainties?
- A discovery of new physics will be a game changer, better not take it back.

Bayesian prior

extraordinary claims require extraordinary evidence



Monte Carlo methods

Monte Carlo methods

Wikipedia: "computational algorithms that rely on repeated random sampling to obtain numerical results."

Useful for, e.g.,

- > Numerical integration.
- > Simulating particle interactions or decay.
- > Uncertainty estimation.

Example: estimate π

```
pi(i=1) = 4.0000, error = 0.8584
pi(i=10) = 3.6000, error = 0.4584
pi(i=100) = 3.36000, error = 0.2184
pi(i=1000) = 3.1240, error = 0.0176
pi(i=10000) = 3.1264, error = 0.0152
pi(i=100000) = 3.1433, error = 0.0017
pi(i=10000000) = 3.1402, error = 0.0014
```

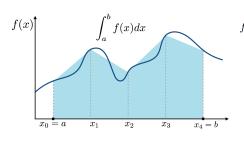

Monte Carlo integration

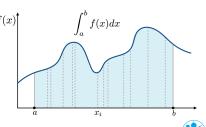
Simple numerical integration

- > Divide range to small pieces of known area and sum.
- > Suffers from curse of dimensionality, $N_{calc} = n^d$.

Similar to π estimate example, can sample function at random points.

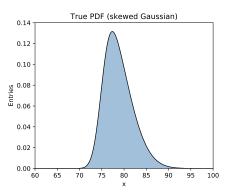
- > Avoids curse of dimensionality of numerical integration, error $\propto 1/\sqrt{N}$.
- > Works for any function (including discontinuous ones).
- > Faster at large d.
- > Used in e.g., phase-space integration of matrix elements.

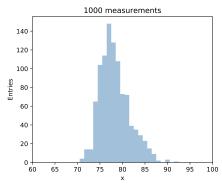




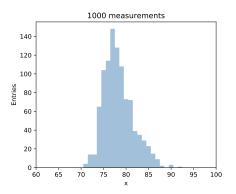
Assume N measurements of x, x_i , how to estimate $\mu_x \pm \sigma_{\mu_x}$? Not easy to estimate σ_{μ_x} without knowing PDF of x.

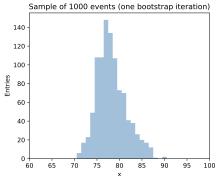
- > Usually there is no access to the "true" PDF.
- \Rightarrow The distribution of x_i is best approximation of it.



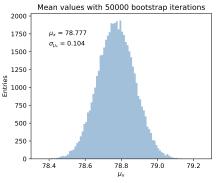


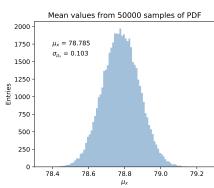
- > Can generate "new" measurements by sampling from x_i .
- Each iteration sample events from the 1000 measurements, allowing repetition.
- > Calculate μ_x for "new" distribution.





- > Obtain a distribution of μ_x by repeating 50,000 times.
- > For comparison, perform 50,000 experiments using true PDF, each with 1000 events.
- \Rightarrow σ_{μ_x} from bootstrap reproduces that from independent experiments.

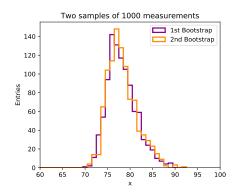


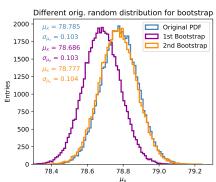


- * Toy MC
- * Can be used in numerical estimation of uncertainties

While making the plots, encountered interesting case,

- > In 1st trial, saw a bias between μ_x distributions (not significant, but still).
- > Spread was OK \rightarrow test by changing random seed when performing first "measurement" of 1000 events.
- > With different random seed, no more bias and same $\sigma_{\mu_{\chi}}$.



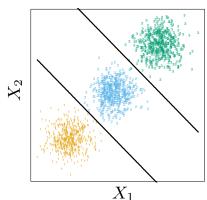


Event classification

Significant part of data analysis, classifying between events.

- Define decision boundaries (cuts).
- Requires prior information (usually from simulation).
- Can it be done "visually"? Usually too many observables/classes.

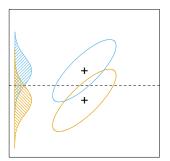


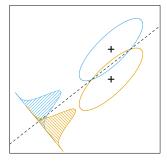


Event classification

Various ways to deal with it (see 3rd lecture about machine learning)

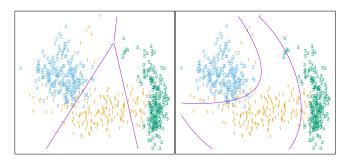
- If observables not highly correlated, can define cuts in bins.
- Many algorithms available to optimize cuts (e.g., linear discriminant analysis, kNN, SVM, BDT, ANN).
- → LDA is similar to Principal Component Analysis, but it maximizes separability between event classes.
- Maximizes distance between means and minimizes overlap.
- Can be used to reduce dimensionality and optimize cut hyperplane.





Event classification

- > Use data with known labels to train discriminant, apply later to "real" data.
- > Can expand space to $5d = X_1, X_2, X_1 \cdot X_2, X_1^2, X_2^2$ to obtain non-linear hyperplanes using linear method.



- * Transformed observables useful also for non-linear methods (e.g., $\log E$).
- * Take care when using "automatic" classifiers, study results carefully.
- * Consider systematic uncertainties when selecting observables.

Miscellaneous

What is unfolding?

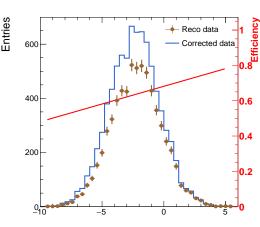
The process of correcting the data for detector effects

A measured distribution is affected by

- > Inefficiencies in the detector
 → lost events.
- > Bias \rightarrow if $\langle x \rangle$ is true mean, measure $\langle x' \rangle = \langle x \rangle + \Delta x$.
- > Smearing → the detector has finite resolution.

Simple example,

- > known efficiency function.
- > no bias or smearing.
- correct each bin for fractional loss of events.
 - * Not really unfolding

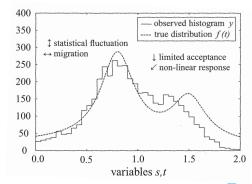


In practice, given a measured histogram y^{data} ,

- > want to obtain "true" distribution x^{data} , where $y^{\text{data}} = R^{\text{data}} \cdot x^{\text{data}}$.
- > The matrix $R_{ij}^{\rm data}$ is the response function of the detector.
- > Inefficiencies contribute to diagonal elements → per-bin correction;
- \rightarrow bias and smearing to off-diagonal \rightarrow bin migration.

How to derive R^{data} ?

- In simulation we have all necessary information.
- > $y^{MC} = R^{MC} \cdot x^{MC}$, where R^{MC} is our detector simulation.
- > Assume $R^{\text{data}} = R^{\text{MC}} = R$.
- > Notice that in general, $y^{\text{data}} \neq y^{\text{MC}}$, $x^{\text{data}} \neq x^{\text{MC}}$, but should be close.
- > Can we then simply use $x^{\text{data}} = R^{-1} \cdot v^{\text{data}}$?

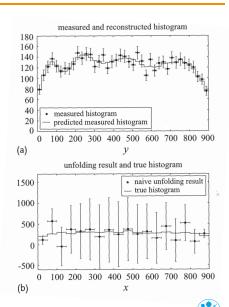


Unfolding is an ill-posed problem

- ⇒ With finite statistics, naive unfolding fails.
- Leads to significant statistical fluctuations between bins.
- Negative correlation coefficients between adjacent bins.
- Positive coefficients between next-to-nearest neighbours.

How to deal with fluctuations? **Regularization**

- Increase weight of "smoother" solutions, damp oscillations.
- > Unfold iteratively using Bayes theorem (will not cover).
- * Various tools available, e.g., RooUnfold.



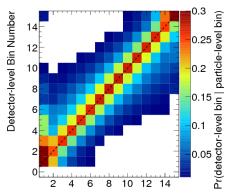
Regularized unfolding

The unfolding problem can be written as a minimization of (simplified)

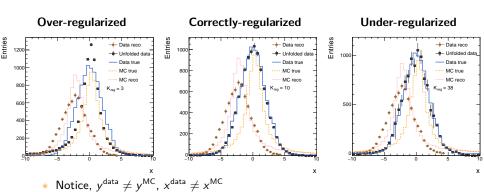
$$\chi^2(\mathbf{x}^{\mathsf{data}}) = (R \cdot \mathbf{x}^{\mathsf{data}} - \mathbf{y}^{\mathsf{data}})^\mathsf{T} (R \cdot \mathbf{x}^{\mathsf{data}} - \mathbf{y}^{\mathsf{data}}) + \tau (L\mathbf{x}^{\mathsf{data}})^\mathsf{T} (L\mathbf{x}^{\mathsf{data}})$$

L is regularization matrix (second derivative commonly used). Second term dampens oscillations.

- > au is regularization parameter,
- * if τ is too small \rightarrow oscillations;
- * if τ is too large $\to x^{\text{data}}$ too smooth and biased towards x^{MC} ;
- Depends on number of events and binning.
- > Some trial & error to choose τ .
- Usually chosen using (independent) MC samples.



Particle-level Bin Number



Why do we bother?

- > Allows to compare directly to theoretical models and among experiments.
- > "Future proof" the data.

Unfolding vs folding

Folding (or forward folding) is another option

- > Instead of correcting data, publish it with corresponding *R*.
- > The problem is then technically simpler,

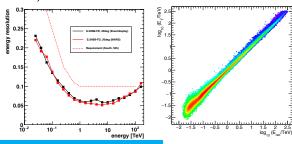
$$\chi^2(\boldsymbol{x}^{\mathsf{theo}}(\boldsymbol{\theta})) = (\boldsymbol{R} \cdot \boldsymbol{x}^{\mathsf{theo}}(\boldsymbol{\theta}) - \boldsymbol{y}^{\mathsf{data}})^\mathsf{T} (\boldsymbol{R} \cdot \boldsymbol{x}^{\mathsf{theo}}(\boldsymbol{\theta}) - \boldsymbol{y}^{\mathsf{data}}).$$

in the case where $x^{\text{theo}}(\theta)$ is the model one wants to test.

> Avoids unfolding issues (ill-defined problem, converting statistical uncertainties to systematic ones).

Issues with folding

- Does not allow comparison between experiments.
- > Harder to test your model against data from various experiments.



What to do?

When possible, unfold.

Extended MLE

The production rate depends on mass of a particle, need to estimate both?

> Extended MLE (Poisson process, PDF $f(x_i; \theta)$)

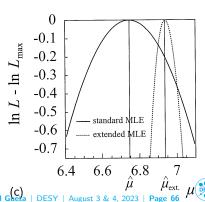
$$L(x; \nu, \theta) = \frac{\nu^{N}}{N!} e^{-\nu} \prod_{i=1}^{N} f(x_{i}; \theta)$$

maximize with respect to both θ and ν (profile likelihood).

> Improved precision of fitted parameters obtained if θ and ν are correlated (e.g., θ = particle mass).

Nice example in Data Analysis in High Energy Physics book

- > PDF, $f(x_i; \mu) = \mathcal{G}(\mu)$.
- > Parameter of interest is μ .
- > Assume $\nu = 9e^{-4(\mu 7)}$.
- > Simulate events with $\mu_{\rm true}=7$.
- > Perform profile likelihood to obtain more precise $\hat{\mu}$.



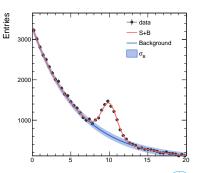
Extended MLE and nuisance parameters

Can be used to include uncertainties in likelihood fit

- > Assume signal and background contributions S and B.
- > Try to estimate S, include Gaussian uncertainty on background $B \to \theta B$, $\mathcal{L}(N; S, \theta) = \frac{(S + \theta B)^N}{N!} e^{-(S + \theta B)} \mathcal{G}(\theta 1, \sigma_{\theta})$
- > Background is constrained to our best guess ($\theta = 1$), with a σ_{θ} spread.
- > Maximize \mathcal{L} to estimate S while marginalizing θ .

In reality can become complex

- > Estimate various parameters of *S* and *B* simultaneously (e.g., particle mass).
- > S and B affected by various uncertainties (many nuisance parameters).
- > Divide data to various regions where different uncertainties contribute.
 - Use tools to build models and perform fit, e.g., RooFit, ctools, Gammapy.



Summary

Statistics is everywhere in physics

- > Lectures can get a bit abstract ightarrow learn by doing.
- Likely that your problem was solved already somewhere else, consult books and the web before reinventing the wheel.
- Use software packages as much as possible (ROOT, RooFit, various Python tools, etc.)

Subjects not covered but worth reading about

- > Confidence intervals, coverage and limit setting.
- > Dealing with systematic and theory uncertainties.
- > Estimating contributions through templates and control regions.
- > Combining results.
- > Many more.

e-mail: orel.gueta@desy.de

