Introduction to Accelerator Physics

Part 1

Pedro Castro / Accelerator Physics Group (MPY) Zeuthen, 8th August 2023

	length	lab	run	particles	energy	dipole field
PETRA	2.3 km	DESY	1978-1986	e-/e+	2x19 GeV	0.33 T
	2.3 km	DESY	1007 2007	e- or e+	12 GeV	0.21 T
PEIRAII			1987-2007	р	40 GeV	0.7 T
PETRA III	2.3 km	DESY	2009- ?	e-	6 GeV	0.10 T
HERA	6.3 km	DESY	1002 2007	e- or e+	27.5 GeV	0.274 T
			1992-2007	р	920 GeV	5 T
LEP	27 km	CERN	1989-2000	e-/e+	2x105 GeV	0.135 T
LHC	27 km	CERN	2010- ?	p/p	2x7000 GeV	8.3 T
FLASH	0.3 km	DESY	2004- ?	e-	1.2 GeV	
XFEL	3 km	DESY	2016- ?	e-	17.5 GeV	
ILC	30 km	?	?	e-/e+	2x250 GeV	

Accelerator lectures framework in Summer Student Prog.

10th, 11th Aug.: Photoinjector PITZ, Namra Aftab

<u>Today and tomorrow:</u> focus on synchrotrons

synchrotrons: machines for discoveries

Facility	Particle(s) discovered	Year of discovery	Nobel Price
SPEAR	charm quark	1974	1976
SPEAR	tau lepton	1975	1995
PETRA	gluon	1979	
S $ar{p}$ pS	W^{\pm}, Z bosons	1983	1984
SLC, LEP	$N_{\rm v}=3$		
Tevatron	top quark	1995	
LHC	Higgs	2012	2013

1. Overview of charged particle accelerators

A historical overview of particle accelerators?

CERN summer student lecture: Particle Accelerators, Michaela Schaumann https://indico.cern.ch/event/1132543

Scope of this lecture:

- 1. The four most important applications of accelerators
- 2. Main accelerators at DESY
- 3. Working with accelerators in the control room Part 2, 60 min.

- Part 1, 30 min.

The Main Accelerator Control Room

Scope of this lecture:

- 1. Synchrotrons: key components and their <u>challenges to reach high energies</u>:
 - Dipole magnetic fields
 Superconducting dipoles
 Part 4, tomorrow
 - Quadrupole magnets to focus beams Part 2
- 2. Synchrotrons and Linear Accelerators:
 - Acceleration using radio-frequency electomagnetic fields Part 3, tomorrow

Particle colliders for <u>High Energy Physics</u> (HEP) experiments

Two beams collider experiments

Light sources for biology, physics, chemistry... experiments

- structural analysis of crystalline materials
- X-ray crystallography (of proteins)
- X-ray microscopy
- X-ray absorption (or emission) spectroscopy
-

Accelerators in medicine

For radioisotope production proton beam + stable isotope $\xrightarrow{\text{transmutation}}$ radioactive isotope

For radiotherapy and radiosurgery:

- x-rays and gamma-rays
- ions (from protons to atoms with atomic number up to 18, Argon)
- neutrons

Accelerators in medicine

Accelerators in medicine

Annihilation

For industrial applications:

Application	
Ion implantation	~ 9500
Electron cutting and welding	~ 4500
Electron beam and x-ray irradiators	~ 2000
Ion beam analysis (including AMS)	~ 200
Radioisotope production (including PET)	~ 900
Nondestructive testing (including security)	~ 650
Neutron generators (including sealed tubes)	~ 1000

approx. numbers from 2007 (worldwide)

with energies up to 15 MeV

Worldwide ...

- > About 120 accelerators for research in "nuclear and particle physics"
- > About 70 electron storage rings and electron linear accelerators used as light sources (so-called 'synchrotron radiation sources')

> More than 18,000 industrial accelerators

ion implantation (>9,000), electron cutting and welding (>4,000)...

Worldwide ...

Many millions of television sets, oscilloscopes using CRTs (Cathode Ray Tube)

Main accelerators at DESY

DESY (Deutsches Elektronen Synchrotron) German electron synchrotron

DESY (<u>Deutsches Elektronen Synchrotron</u>) German electron synchrotron

1964, 7.4 GeV

<u>Positron-Elektron-Tandem-Ring-Anlage</u> (PETRA) 'positron-electron tandem ring accelerator'

<u>Positron-Elektron-Tandem-Ring-Anlage</u> (PETRA) 'positron-electron tandem ring accelerator'

<u>Free-electron LAS</u>er in <u>Hamburg</u> (FLASH)

European X-ray Free-Electron Laser (XFEL)

DESY.

HERA (<u>Hadronen-Elektronen-Ring-Anlage</u>) Hadron-electron ring accelerator

27,5 GeV (electrons) / 920 GeV (protons) / 6,3 km / 1992 - 2007

HERA (<u>Hadronen-Elektronen-Ring-Anlage</u>) Hadron-electron ring accelerator

27,5 GeV (electrons) / 920 GeV (protons) / 6,3 km / 1992 - 2007

Discussion time / exercise

Do you know any accelerator from your university / town / country?

Which kind of accelerator is it? (cyclotron, synchrotron, linear accel.) Which application area is it dedicated to? (HEP, synchrotron radiation, medicine) and Which are the main parameters that describe it? (particle type, energy, current...)

if no \rightarrow pick up an accelerator from CERN or DESY (see table)

hint: you may search in internet ...