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2008 2009 2010

September 10, 2008
First beams around 

LHC commissioning

April 2008
Last dipole down

(Total: 1232 dipoles)

September 30, 2008
First collisions planned …

September 19, 2008
Disaster:

 Ramping the dipole current to 9.3 kA (6.5 T)

 At 8.7 kA, an electrical arc developed in a 
LHC dipole magnet interconnection
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Electrical arc between C24 and Q24
• ~6 tonnes of liquid He lost

• contamination of the vacuum tube

• damage of 53 superconducting magnets
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2008 2009 2010

September 19, 2008
Disaster 

Electrical arc developed in a LHC 

dipole magnet interconnection

November 20,  2009
Beam back

March 30, 2010
First collisions at 3.5 TeV

Repair and Consolidation

September 10, 2008
First beams around 

LHC commissioning

April 2008
Last dipole down

(Total: 1232 dipoles)
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Circular accelerators: the synchrotron

vacuum chamber

bending magnet

accelerating device

injector

straight sections

beam
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Circular accelerators: the synchrotron

vacuum chamber

accelerating device

bending magnet

Low Energy Antiproton Ring (LEAR) at CERN (built in 1982)

Circular accelerators: the synchrotron
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B (perpendicular)

R

Circular accelerators: the synchrotron

charge velocity

of the particle

magnetic field

momentum
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vacuum chamber

magnet

accelerating device

injector

straight sections

Circular accelerators: the synchrotron

(circular motion) 
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vacuum chamber

magnet

accelerating device

injector

straight sections

Circular accelerators: the synchrotron

(circular motion) 
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Electromagnet

permeability of iron = 300…10000 larger than air

�
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Dipole magnet

beam

air gap

flux lines

beam

Ampere’s law:
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Dipole magnet cross section

increase B  increase current, but power dissipated  P � � · ��
 large conductor cables



Page 13

Dipole magnet cross section

water cooling channels
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Dipole magnet cross section
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Dipole magnet

beam

iron

current

loops
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Low Energy Antiproton Ring (LEAR) at CERN

Dipole magnet
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Dipole magnet cross section

C magnet + C magnet = H magnet

beam
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Dipole magnet cross section (another design)

beam

water cooling tubes

current leads

Power dissipated:
2IRP ⋅=

beam
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Superconductivity

12.5 kA

normal conducting cables

12.5 kA

superconducting cable
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Superconductivity

resistance

critical temperature (Tc):

Tin

Copper
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increase B  increase current, but power dissipated  P � � · ��
 large conductor cables

 saturation effects

Saturation of iron

using superconducting cables
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I

' ∶ permeabilityferromagnets

paramagnets
free space

diamagnets

Saturation of iron: 1.6 – 2 T

increase B  increase current, but power dissipated  P � � · ��
 large conductor cables

 saturation effects
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I [A]

Saturation of iron: 1.6 – 2 T

B vs H curve for iron
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Superconducting  dipole magnets

superconducting dipoles

LHC

HERA
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Superconducting  dipole magnets: cross section

Tevatron HERA RHIC LHC

Fermilab DESY Brookhaven CERN
Chicago (USA) Hamburg (Germany) Long Island (USA) Geneva (Switzerland)

4.5 T 5.3 T 3.5 T 8.3T
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Superconducting  dipole magnets
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Dipole field inside 1 conductor

B

Ampere’s law:
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Dipole field inside 2 conductors

densitycurrentuniform=J

J J
B Br
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Dipole field inside 2 conductors
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Dipole field inside 2 conductors
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Dipole field inside 2 conductors
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Dipole field inside 2 conductors
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constant vertical field
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.
B

56 mm

15 mm x 2 mm

From the principle … to the reality…
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LHC dipole coils in 3D

p beam

p beam

15 mm x 2 mm

Aluminium collar
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LHC dipole coils in 3D

B
p beam

p beam

I
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LHC dipole coils in 3D

15 mm x 2 mm
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Computed magnetic field

B
ferromagnetic iron

nonmagnetic collars

56 mm
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LHC dipole magnet (cross-section)

beam tubes

superconducting coils

nonmagnetic collars

ferromagnetic iron

steel container for He

insulation vacuum

supports

vacuum tank

1 m
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LHC dipole magnet interconnection:

Superconducting  dipole magnets

p

p
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LHC dipole magnet interconnection:

Superconducting  dipole magnets
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Electrical joint between superconducting modules

dipole bus bar splice

(electrical joint)
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• Resistance measurements and X-ray pictures have shown the 

presence of many of such defective joints in the machine

Electrical joint between superconducting modules
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Electrical joint between superconducting modules

dipole bus bar splice

(electrical joint)

September 19, 2008

 Ramping the dipole current to 9.3 kA (6.5 T)

 At 8.7 kA, an electrical arc developed in a 
dipole bus bar splice, which punctured the 
helium enclosure

 The magnetic energy stored in one dipole 
string (1 octant) at 8.7kA (6.1 T) is 600 MJ 
which is equivalent to 140 tonnes of TNT
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Electrical joint between superconducting modules

dipole bus bar splice

(electrical joint)

September 19, 2008

 Ramping the dipole current to 9.3 kA (6.5 T)

 At 8.7 kA, an electrical arc developed in a 
dipole bus bar splice, which punctured the 
helium enclosure

 The magnetic energy stored in one dipole 
string (1 octant) at 8.7kA (6.1 T) is 600 MJ 
which could heat and melt 900 kg of copper
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Electrical joint between superconducting modules

dipole bus bar splice

(electrical joint)

September 19, 2008

 Ramping the dipole current to 9.3 kA (6.5 T)

 At 8.7 kA, an electrical arc developed in a 
dipole bus bar splice, which punctured the 
helium enclosure

 The magnetic energy stored in one dipole 
string (1 octant) at 8.7kA (6.1 T) is 600 MJ 
which is equivalent to 140 tonnes of TNT
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PT
QVQV QV QVQV SVSV

Q D D QD D D QD D D QD D D QD

50m 50m100m

Q23 Q25Q24 Q26 Q27

(DN90) (DN90)
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The LHC repairs in detail
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Phase I

Surfacing of bus bar and installation of redundant shunts by soldering

New electrical joint between superconducting modules



Page 49

New electrical joint between superconducting modules

Phase II

Application of clamp and reinforcement of nearby bus bar insulation
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New electrical joint between superconducting modules

Phase II

Application of clamp and reinforcement of nearby bus bar insulation
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New electrical joint between superconducting modules

Phase II

Application of clamp and reinforcement of nearby bus bar insulation
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New electrical joint between superconducting modules

Phase II

Application of clamp and reinforcement of nearby bus bar insulation
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New electrical joint between superconducting modules

Phase III

Insulation between bus bar and to ground, Lorentz force clamping
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New electrical joint between superconducting modules

Phase III

Insulation between bus bar and to ground, Lorentz force clamping
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New electrical joint between superconducting modules

Phase III

Insulation between bus bar and to ground, Lorentz force clamping
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New electrical joint between superconducting modules

Phase III

Insulation between bus bar and to ground, Lorentz force clamping
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Phase III

Insulation between bus bar and to ground, Lorentz force clamping

Repeat 3 times per interconnect (1MB, 2MQ) 
and for ~1700 Interconnects in the machine

New electrical joint between superconducting modules
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Summing-up of this part

Circular accelerators: the synchrotron

RF cavities:
pill-box cavity

superconducting cavities

Dipole magnets:
normal conducting dipoles

superconducting dipoles
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„I cannot teach anybody anything,
I can only make them think.“ (Socrates)


