Physics beyond the standard model II

Ben Brüers DESY Zeuthen, 30.08.2023

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

DESY.

Last time...

http://cds.cern.ch/record/2804061

The Standard model is very precise, but...

Last time (2)...

 ...there are a bunch of things it cannot explain: 9 fermion masses (m_u , m_d , m_c , m_s , m_b , m_t ; m_e , m_u , m_τ)

- + 2 Higgs boson parameters: the mass & VEV (m_H, v)
- + 3 coupling parameters (g_W, g', g_s)
- + 4 CKM parameters (3 mixing angles + 1 CP violating phase)
- + 1 CP violating phase in QCD (see later)

19 free parameters

$$\delta M_H^2 = \frac{G_{\rm F} \Lambda^2}{4\pi^2 \sqrt{2}} (6M_W^2 + 3M_Z^2 + M_H^2 - 12m_t^2)$$

$$\delta M_H^2 \big|_{t-\text{loop}} \approx -\frac{3G_{\text{F}}}{\pi^2 \sqrt{2}} m_t^2 \Lambda^2 \approx -0.075 \,\Lambda^2$$

"bare mass" tuned very finely, $O(10^{-4})$ - $O(10^{-34})$ GeV!

Last time (3)...

- Discussed multiple SM extension:
 - Axions + ALPs
 - 2HDM(+a)
 - SUSY
 - GUTs
 - Extra dimensions

Q |fermion> = |boson> Q |boson> = |fermion>

MSSM: m₀=M_{1/2}=2 TeV, A₀=0, tanβ=30

ect	df
19/1	019.
/20	3
ents	dSM
stuc	Non
de	B
lesv	Le
en.c	ectr
-th	_
v.ze	che
Ŵ	ues
s://	۵.
atto:	
_	

ures/

Model	Dark Matter	Hierarchy problem	Strong CP problem	Unification	Gravity
Axions	\checkmark	-	\checkmark	-	-
2HDM	\checkmark	-	-	-	-
SUSY	\checkmark	\checkmark	possible	\checkmark	e.g. mSUGRA
GUTs	-	-	-	\checkmark	-
Extra dims.	\checkmark	\checkmark	-	possible	\checkmark

Today:

- Will discuss experiments searching for physics beyond the Standard Model
- Will cover collider-based and other experiments

The LHC

<u>LHC</u>

→circumference 27 km

→proton-proton collisions with a CME of $\sqrt{s} = 13$ TeV

→interacting
 particles are
 quarks, so their
 CME often
 smaller

→detectors surround points of collision

https://previews.123rf.com/images/denisnata/denisna ta1003/denisnata100300048/6555910-black-spiral-te lephone-cable-isolated-on-white-background.jpg

Experiments at the LHC

https://www.weltmaschine.de/sites/sites_custom/site_weltmaschine/content/e28 861/e36564/e36588/e36608/0511013_01-A4-at-144-dpi.jpg https://cms.cern/sites/default/files/field/image/cds-record-1275108-hoch-2007 1215_721-nice.jpg

How to search for BSM physics at colliders

- BSM physics must be rare and/or involve heavy particles (else discovered)
- Two search principles:
 - BSM physics slightly modifies masses, couplings, etc.
 → investigate these effects in precision measurements
 - BSM physics particles produced in proton collisions
 - \rightarrow search for the particles / reconstruct their decays, etc.
 - \rightarrow ideally investigate signatures that are rare in the SM

Metrics to keep in mind

- BSM physics must be rare and/or involve heavy particles (else discovered)
- Cross-section must not be too low, else will not be able to discover anything → important model metric
- Too investigate very rare signatures need many collision events
- The mass of the particles must not be heavier than CME, else not produced
- Can only detect particles produced in area of detector (detector not infinite) and if detector sufficiently efficient → important collider metrics: CME, luminosity, detector efficiency

$$N_{obs} = ∫ 𝔅(t) σ ε A dt$$

The ATLAS detector

How do we measure particles with the ATLAS detector?

https://cameo.mfa.org/images/b/ba/2000.979-CR9834-d1.jpg

(summary on the next slide)

Particle reconstruction: ATLAS detector

Q had. 1 had. 2 had. 3 ... had. n

- Multi-layer detector, measure particles via their interaction with the detector
- Inner-most detector: measure tracks of charged particles (electron, muon, charged hadron)
- ECAL / HCAL: measure energy of EM-interacting / hadronically interacting particle
 → concept: make particles lose all their energy and measure the loss
- Muon chambers for high precision muon momentum measurements
- NB: due to quark confinement, quarks cannot exist alone

 → form collimated hadron sprays, we call these "jets"

What about invisible particles?

https://cameo.mfa.org/images/b/ba/2000.979-CR9834-d1.jpg

(summary on the next slide)

How do we measure invisible particles?

- Neutrinos and potential BSM particles interact weakly with detector \rightarrow no signal
- But: if produced with particles that produce a signal: use **momentum** • conservation to infer on them
- Protons collide heads on: momentum of ٠ interacting particles in direction orthogonal to the beam axis is ~ 0
- Momentum is conserved \rightarrow momenta • of all particles in the plane transverse to the beam axis must sum to zero \rightarrow can infer on the total momentum of the particles escaping detection and the direction in the transverse plane \rightarrow this is called Missing Transverse Momentum and the magnitude Missing Transverse Energy (MET) $0 = \sum_{\text{all}} \vec{p}_{\text{T, i}} = \sum_{\substack{\underline{o} \\ \underline{o} \\ \underline{i} \\ \underline{j} \\ \underline{j}$ Missing transverse momentum DESY.

How do we search for the BSM particles?

- In the data, select those collision events with:
 - 2 jets compatible with a bottom-quark
 - 2 leptons
 - MET compatible with $2x \chi^0_1$ and 2x v
 - Maybe an invariant mass requirement on the system of b-W- χ^0_1
- Caveat: we might not have saved these events in ATLAS!!
 - Protons collide every 25 ns in ATLAS
 - \rightarrow 1 Mb of data / event or 40 Tb of data per second!!
 - \rightarrow cannot store this!! & most not of interest (low energy)
 - Solution: coarsely analyse all collision event as they happen
 - Only store events fulfilling certain criteria, e.g. 6 jets, 2 leps \rightarrow "triggering"
 - So: the BSM physics you can find depends on your trigger criteria!

Triggering criteria in ATLAS (in 2018)

• Lots of triggers there! But sometimes need to add one...

DESY.

ATL-DAQ-PUB-2019-001/

		Trigger Sele	L1 Peak	HLT Peak		
Trigger	Typical offline selection	L1 [GeV]	HLT [GeV]	Rate [kHz] $L=2.0\times10^3$	$\frac{\text{Rate [Hz]}}{4 \text{ cm}^{-2}\text{s}^{-1}}$	
	Single isolated $\mu_{n_{\rm T}} > 27 {\rm GeV}$	20	26 (i)	16	218	
	Single isolated tight $e_{p_T} > 27 \text{ GeV}$	20 22 (i)	20(i)	31	105	
Single leptons	Single $\mu_{p_{T}} > 52 \text{ GeV}$	22 (1)	50	16	70	
Single leptons	Single a , $p_T > 52$ GeV	20 22 (i)	60	28	20	
	Single τ , $p_{\rm T} > 170 {\rm GeV}$	100	160	1.4	42	
	Two μ , each $p_{\rm T} > 15$ GeV	2×10	2×14	2.2	30	
	Two μ , $p_T > 23.9$ GeV	20	22.8	16	47	
	Two very loose <i>e</i> , each $p_{\rm T} > 18 \text{ GeV}$	2×15 (i)	2×17	2.0	13	
-	One <i>e</i> & one μ , $p_T > 8, 25$ GeV	$20(\mu)$	7.24	16	6	
Two leptons	One loose e & one μ , $p_{\rm T} > 18$, 15 GeV	15,10	17, 14	2.6	5	
	One <i>e</i> & one μ , $p_{\rm T} > 27, 9 {\rm GeV}$	22 (e, i)	26,8	21	4	
	Two τ , $p_{\rm T} > 40, 30 {\rm GeV}$	20 (i), 12 (i) (+jets, topo)	35, 25	5.7	93	
	One τ & one isolated μ , $p_{\rm T} > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.4	17	
	One τ & one isolated e , $p_{\rm T} > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	4.6	19	
	Three very loose $e, p_{\rm T} > 25, 13, 13 \text{ GeV}$	$20, 2 \times 10$	24, 2 × 12	1.6	0.1	
	Three μ , each $p_{\rm T} > 7 {\rm GeV}$	3×6	3×6	0.2	7	
Three leptons	Three μ , $p_{\rm T} > 21, 2 \times 5$ GeV	20	$20, 2 \times 4$	16	9	
	Two μ & one loose $e, p_{\rm T} > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 (\mu)$	$2 \times 10, 12$	2.2	0.5	
	Two loose e & one μ , $p_{\rm T} > 2 \times 13$, 11 GeV	$2 \times 8, 10$	$2 \times 12, 10$	2.3	0.1	
Signle photon	One loose γ , $p_{\rm T} > 145 { m GeV}$	24 (i)	140	24	47	
· · · · · · · · · · · · · · · · · · ·	Two loose γ , each $p_{\rm T} > 55 \text{ GeV}$	2×20	2×50	3.0	7	
Two photons	Two γ , $p_{\rm T}$ > 40, 30 GeV	2×20	35, 25	3.0	21	
	Two isolated tight γ , each $p_{\rm T} > 25 \text{ GeV}$	2 × 15 (i)	2 × 20 (i)	2.0	15	
	Jet ($R = 0.4$), $p_{\rm T} > 435 {\rm ~GeV}$	100	420	3.7	35	
Single jet	Jet $(R = 1.0), p_{\rm T} > 480 {\rm GeV}$	111 (topo: $R = 1.0$)	460	2.6	42	
2.225 2.095. 2	Jet $(R = 1.0), p_{\rm T} > 450 \text{ GeV}, m_{\rm jet} > 45 \text{ GeV}$	111 (topo: $R = 1.0$)	420, $m_{\rm jet} > 35$	2.6	36	
	One <i>b</i> (ϵ = 60%), <i>p</i> _T > 285 GeV	100	275	3.6	15	
	Two $b \ (\epsilon = 60\%), p_{\rm T} > 185, 70 \ {\rm GeV}$	100	175, 60	3.6	11	
<i>b</i> -jets	One b ($\epsilon = 40\%$) & three jets, each $p_{\rm T} > 85$ GeV	4×15	4×75	1.5	14	
	Two $b \ (\epsilon = 70\%)$ & one jet, $p_{\rm T} > 65, 65, 160 \text{ GeV}$	2 × 30, 85	$2 \times 55, 150$	1.3	17	
	Two $b \ (\epsilon = 60\%)$ & two jets, each $p_{\rm T} > 65 \text{ GeV}$	$4 \times 15, \eta < 2.5$	4×55	3.2	15	
	Four jets, each $p_{\rm T} > 125$ GeV	3×50	4×115	0.5	16	
Multijets	Five jets, each $p_{\rm T} > 95 \text{ GeV}$	4 × 15	5×85	4.8	10	
munijets	Six jets each $p_T > 80$ GeV	4 × 15	6×70	48	4	

Page 16

Model dependence of collider searches

- Disadvantage of triggering: need to know what you are looking for...
- Need to select a model to design your search!
 - \rightarrow BSM searches at collider depend on the model you are investigating!!!!

https://www.ataxia.org/wp-content/uploads/2022/07/needle-in-a-haystack-1752846 _960_720.jpg

Ok fine, we triggered, we reconstructed our particles, what's next?

- The entire dataset still contains very many collision events
- BSM physics is rare→ need to filter data to "see" our BSM physics
- Use e.g. number of reconstructed electrons, jet momenta, etc.
- Filtered data comprised of our signal & Standard Model background
- Define multiple "filters" = "regions"

DESY.

- **Signal regions:** much signal, little bkg.
- Control regions: estimate bkg.
- Validation regions: verify bkg. estimate

Searching for SUSY

- Recall: there are many SUSY models, e.g. MSSM, pMSSM, CMSSM, etc.
- In practise: study simplified versions of these models to reduce number of parameters to study
- Often also reduce number of production channels / decay channels
- Result give an **indication** for what would happen in the full model

SUSY example: stop-2L

SUSY-2018-08

2 leptons (aka electrons / muons)

Stop-2L: final distribution

SUSY-2018-08

Stop-2L: final distribution

SUSY-2018-08

There are many SUSY searches out there

There are many SUSY searches out there

- SUSY particle masses between 100 GeV and 1 TeV largely excluded
- Some models under pressure; hierarchy problem only solved if masses "light"

	Model	Się	gnature	∫£a	<i>lt</i> [fb ⁻¹]	Mass limit				
S	$ ilde q ilde q, ilde q o q ilde \chi_1^0$	0 <i>e</i> , μ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	140 140	 <i>q</i> [1×, 8× Degen.] <i>q</i> [8× Degen.] 		1.0 0.9		1.85	$\mathfrak{m}(ilde{\chi}_1^0){<}400~{ m GeV}$ $\mathfrak{m}(ilde{q}){-}\mathfrak{m}(ilde{\chi}_1^0){=}5~{ m GeV}$
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , <i>µ</i>	2-6 jets	E_T^{miss}	140	785 385		Forbidden		2.3 1.15-1.95	$\mathfrak{m}(ilde{\chi}_1^0)=0~{ m GeV}$ $\mathfrak{m}(ilde{\chi}_1^0)=1000~{ m GeV}$
Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 <i>e</i> , <i>µ</i>	2-6 jets		140	<i>ğ</i>				2.2	$m(\tilde{\chi}_1^0)$ <600 GeV
ve	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	$ee, \mu\mu$	2 jets	E_T^{miss}	140	ξ.				2.2	$m(\tilde{\chi}_1^0)$ <700 GeV
clusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	E_T^{miss}	140 140	ĩg ĩg		1	.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$
<u>r</u>	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_1^0$	0-1 <i>e</i> , μ SS <i>e</i> , μ	3 <i>b</i> 6 jets	E_T^{miss}	140 140	200 P00			1.25	2.45	$m(\tilde{\chi}_{1}^{0}) < 500 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$
	$ ilde{b}_1 ilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b	E_T^{miss}	140	${ar b_1\ ar b_1}$	0.68		1.255		$m(\tilde{\chi}_1^0)$ <400 GeV 10 GeV< $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0)$ <20 GeV
arks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 2 τ	6 <i>b</i> 2 <i>b</i>	E_T^{miss} E_T^{miss}	140 140	<i>b</i> ₁ Forbidden <i>b</i> ₁	0.13	0 3-0.85	.23-1.35	$\Delta m(\tilde{\chi}_{2}^{\prime})$	$(\tilde{\chi}^0_1) = 130 \text{ GeV}, m(\tilde{\chi}^0_1) = 100 \text{ GeV}$ $(\tilde{\chi}^0_2, \tilde{\chi}^0_1) = 130 \text{ GeV}, m(\tilde{\chi}^0_1) = 0 \text{ GeV}$
and	$\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \rightarrow \iota \tilde{\chi}_1^0$	0-1 <i>e</i> , μ	≥ 1 jet	E_T^{miss}	140	\tilde{t}_1			1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$
1. S Dro	$\tilde{\iota}_1 \tilde{\iota}_1, \tilde{\iota}_1 \! \rightarrow \! W b \tilde{\chi}_1^0$	1 e, µ	3 jets/1 b	E_T^{miss}	140	\tilde{t}_1	Forbidden	1.05			$m(\tilde{\chi}_1^0)=500 \text{ GeV}$
ger ct J	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1-2 τ	2 jets/1 b	$E_{T_{i}}^{\text{miss}}$	140	\tilde{t}_1	Forbido	lden	1.4		m(~~1)=800 GeV
3 rd dire	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,μ 0 e,μ	2 c mono-jet	E_T^{miss} 3 E_T^{miss}	86.1 140	\tilde{c} \tilde{t}_1	0.55	0.85			$m(\tilde{\chi}_1^0)=0 \text{ GeV}$ $m(\tilde{\iota}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 e,μ	1-4 b	E_T^{miss}	140	\tilde{t}_1		0.067-	1.18		$m(\tilde{\chi}_2^0)=500 \text{ GeV}$
	$\tilde{t}_2 \tilde{t}_2, \ \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ	1 <i>b</i>	E_T^{miss}	140	\tilde{t}_2	Forbidden	0.86		$m(\tilde{\chi}_1^0)$ =	=360 GeV, m(\tilde{t}_1)-m($\tilde{\chi}_1^0$)= 40 GeV
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{c} \text{Multiple } \ell/\text{jets} \\ ee, \mu\mu \end{array}$	≥ 1 jet	E_T^{miss} E_T^{miss}	140 140	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \end{array} $ 0.205		0.96			$m(\tilde{\chi}_1^0)=0$, wino-bino $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>		E_T^{miss}	140	$\tilde{\chi}_1^{\pm}$	0.42				m $(\tilde{\chi}_{1}^{0})=0$, wino-bino
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple ℓ/jets		E_{T}^{miss}	140	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ Forbidden		1.0	5		m $(\tilde{\chi}_1^0)$ =70 GeV, wino-bino
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^+$ via $\tilde{\ell}_L / \tilde{\nu}$	2 <i>e</i> , µ	1	E_T^{miss}	140	$\tilde{\chi}_1^{\pm}$		1.0			$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^{0}))$
Vie	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \to \tau \tilde{\chi}_1^0$	2 7	0 1 1 1	T	140	τ [$\tau_{\rm R}, \tau_{\rm R,L}$]	0.34 0.48				$m(\tilde{\chi}_1^0)=0$
G, m	$\ell_{\mathrm{L,R}}\ell_{\mathrm{L,R}}, \ell \rightarrow \ell \chi_1^\circ$	2 e, μ ee, μμ	0 jets $\geq 1 \text{ jet}$	Emiss	140 140	ℓ ℓ̃ 0.26	0.7				$m(\tilde{\ell}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e, µ	$\geq 3 b$	Emiss	140	Ĩ.	0.55	0.94			$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G}) = 1$
		$0 e, \mu \geq$	2 large jets	Emiss	140	Ĥ Ĥ	0.55	.45-0.93			$BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$
		2 e,µ	≥ 2 jets	E_T^{miss}	140	Ĩ	0.7	.77		E	$R(\tilde{\chi}^0_1 \to Z\tilde{G}) = BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 0.5$

1 TeV

100 GeV

Searching form Dark Matter with Stop-2L

- In a simplified Dark Matter model, can produce Dark Matter from a mediator radiating off an inner top-quark line
- This mediator decays into 2x DM particle
- Final state the same as in Stop-2L!!!
- Simultaneously search for SUSY and DM!!!

SUSY-2018-08

Stop-2L Dark Matter results

• Exclude DM mediator masses up to 300 GeV

Page 27

Searching for Dark Matter in tW+DM

2HDM+a							
(125.1 GeV h ⁰ Scalar Higgs •	Unknown H± Charged Higgs 0	$\chi_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_$					

- tW+DM high x-sec
- Two W-bosons: zero, one or two visible leptons (e,µ)
- OL, 1L, 2L channel

 → basically 3 separate
 searches
- To get maximum sensitivity
 - \rightarrow combine the three searches

tW+DM: results

• Exclude DM mediator masses up to 300 GeV

BREAK (5-10 mins)

Other ways to search for Dark Matter

Direct detection Dark Matter searches

- Assume: permanent flow of DM particles through planet earth
- **DM scatters with nuclei** (as no EM interaction) → **measurable**
- Number of scattered DM particles depends on:
 - \circ $\,$ Density of DM, $\rho_0\text{=}0.3~GeV/c^2/cm^3$
 - DM velocity w.r.t. earth ~220 km/s
 - DM-nuclei cross-section
 - Mass of DM & interacting nucleus
 - $\circ \quad \text{Mass of detector} \rightarrow \text{higher better}$
 - Spin of DM particle and spin sensitivity of target material
 - $\circ \quad \mbox{Minimum recoil energy sensitivity of} \\ \mbox{detector} \rightarrow \mbox{lower better} \\ \end{tabular}$

Experimental setups of DD experiments

arxiv:1903.03026

- Measure recoil of nuclei by DM
 → phonons/heat
- Backgrounds:

DESY.

- nuclear recoils by neutrons, cosmic muons
- $\circ \quad \mbox{ particles } (\gamma,\,\beta^{\pm}) \mbox{ from radioactive } \\ \mbox{ decays} \rightarrow \mbox{ often interact via EM } \\ \end{array}$
- Use very pure, non-activated, well-selected materials & shielding
- Measure two signals: one from EM recoil (e.g. charge; higher for bkg.); one from nuclear recoil (e.g. heat)

Image credit bottom: https://th-thumbnailer.cdn-si-edu.com/3Qxw0k7nJ0cC7BUwbFSP5zHO 6w8=/fit-in/1600x0/https%3A%2F%2Ftf-cmsv2-smithsonianmag-media. s3.amazonaws.com%2Ffiler%2F42%2Fd5%2F42d5a303-b006-4972-9 efa-92797a25ba9c%2F31667821088 f762d2c200 o.jpg

Cryogenic detectors:

- At very low T (mK)
- Scattering DM increases T
- Bkg. ionises material
 → separate signal
- Materials: Ge, Si

Noble liquid detectors:

- E.g. liquid Ar, Xe
- Phonons from DM→ photons + ionisation
- Example XENON experiment
- Detect photons with PMTs at the side
- Detect ionisation by E-field + scintillation signal at the top
- Ratio of photons/ionisation different for DM / bkg.

DD experiments – results

- Direct detection experiment results interpreted in terms of Effective Field Theories, no assumption on interaction mechanism of DM and nucleus
- The neutrino floor is not that far!

Nucleus Nuc

Nucleus

Х

rpp2022-rev-dark-matter

Х

DD experiments – comparison to collider

- Comparing to collider: need to use a "simplified DM model" \rightarrow additional modiator ϕ/a

Indirect detection Dark Matter searches

- In areas of high mass density: Dark Matter will annihilate → indirect detection
- Annihilation yields signals such as photon pairs, neutrinos, baryons
- High mass density areas: sun, galaxy centers, ...
- Production rate of IDD events depends on:
 - Annihilation rate / cross-section
 - Dark Matter density
 - The number of final state particles

$$\Gamma_f^A = c \frac{\rho_{\rm DM}^2}{m_{\rm DM}^2} \langle \sigma v \rangle N_f^A$$

Indirect Detection

https://www.youcanseethemilkyway.com/wp-content/uploads/2023/01/M assive_Black_Hole_at_the_Center_of_the_Milky_Way.jpg

rpp2022-revdark-matter

Experimental techniques of indirect detection

Photons

- produced e.g. when DM + DM \rightarrow quarks
- search for high energy photons
 ("gamma rays") e.g. from the galactic center
- experiments: e.g. FERMI-LAT

Neutrinos

- produced e.g. in the sun
- search for high energy neutrinos from sun
- experiments: e.g. IceCube, Kamiokande
- Antiparticles
 - $\circ \quad \text{ produced e.g. if DM + DM} \to e^+e^-$
 - charged particles deflected in universe \rightarrow generally search for antiparticles
 - experiments: e.g. HEAT, AMS, HESS

arxiv:1604.00014

Indirect detection: results

- 10^{-} DM self-interaction cross-section 10^{-24} s^{-1} $\langle \sigma v \rangle \left[\text{cm}^3 \right]$ 10^{-25} HESS GC Fermi GC inclusive Fermi GC w/ bg modeling 10^{-26} Fermi IGRB inclusive Fermi IGRB aniso inclusiv Fermi satellite Radio: Crocker et a Radio: Bertone et : $\chi\chi \rightarrow bb$ 10^{-27} PAMELA antiprotons 100 1000 10 10000 m_γ [GeV] 25 AMS-02 (measurement) APJ. 493, 694 (1998) 20 Ĕ³Φ_{e⁺} [GeV² m⁻² sr⁻¹ s⁻¹] APJ. 729, 106 (2011) 15 10 10 100 1000 Energy [GeV]
- Covered mass range comparable to DD

- Exciting result: excess of positrons observed by multiple experiments (AMS, FERMI, PAMELA)
- Yet unclear if it is due to Dark Matter, astrophysical origin investigated

https://ams02.space/sites/default/files/inline-im ages/%20PhysRevLett.122.041102.Fig5_.png

Axions

- Searches so far considered WIMP DM
 → mass & x-sec. similar to weak bosons
- Also covered Axion Dark Matter last time

 → much lighter DM candidates
 → origin from solution of strong CP probl.
- Interact with SM matter by 2-photon vertex

Axions search experiments

- Idea of Axion experiments:
 - can interact with Axions by exposing them to strong magnetic fields (=high photon flux)
 - can produce Axions by using strong lasers and strong magnetic fields
- ALPs experiment: shine laser into a strong magnetic field
 - photons converted to Axions
 - photons stopped by wall, Axions pass through
 - \circ on the other side: another strong magnet \rightarrow Axions converted to photons

https://particle-physics.desy.de/sites/site_particle-physics/content/e221990/e222445/e22 8223/e228225/e228229/ALPS_ger.jpg

arxiv:1410.2566

Searching for Axions from & in the universe

- CAST / (Baby-)IAXO experiments: search for Axions produced in sun
 - use a large magnet to point at the sun: Axions converted to photons
 - measure these photons
- The magnetic fields converting (photons \rightarrow Axions) & (Axions \rightarrow photons) can also be of astrophysical origin
 - reduced attenuation of high energy photons

https://mediastream.cern.ch/MediaArchive/Photo/Public/2002/ 0209017/0209017_01/0209017_01-A4-at-144-dpi.jpg

DESY.

Page 41

Axions: exclusion limits

Ciaran O'Hare, AxionLimits, doi:10.5281/zenodo.3932430, Link

DESY.

The magnetic moment of the muon

- Recall: circular current = magnetic field → can be attributed to a magnetic moment
- Similarly: charged particles on circular orbits & spinning around themselves exhibit magnetic moment
- Magnetic moment basically indicates how strongly a particle is affected by a magnetic field
 ??

How to measure g-2

 $\mathbf{F} = \mathbf{q} \mathbf{v} \times \mathbf{B}$

• Produce muons, store ring via dipole magnets

https://upload.wikimedia.org/wikipedia/commons/7/7c/Fermilab_g-2_%28E989%29_ring.jpg

How to measure g-2 (2)

- Two frequencies:
 - rotation frequency of muons (cyclotron frequency) ω_{c}
 - precision frequency due to spin ω_s
- Their difference depends on g-2!!!
 - \rightarrow measure ω_a & B \rightarrow g-2 (*)!!

*in reality you measure ωP - the Lamor frequency of the free proton - instead of ${\boldsymbol B}$

How to measure g-2 (3)

- Muon is not stable and decays
- Measure energy of decay positrons

 → Most energetic if muon momentum & spin align!
- If filter out most energetic positrons, see modulation with frequency ω_a !!!

g != 2

Sweigart, PhD thesis

Page 46

- If filter out most energetic positrons, see modulation with frequency ω_a^{\parallel}
- Besides ω_a , must measure **B**!
- Measure magnetic field with special "trolley" measuring the field very precisely
 DESY. every three days & many other tools

ttps://conference.ippp.dur.ac.uk/event/999/contributions/5220 /attachments/4218/4977/Schreckenberger Planck2021.pdf

Results of g-2

- g-2 measured extremely precisely to ~10 digits!
- 2 SM predictions: different QCD loop calculations
- Data-driven approach: an input is data from e⁺e⁻-colliders → 5.1σ discrepancy to meas.
- The other is from lattice QCD
 → agrees with measurement!
 - \rightarrow but not fully reproduced
- Data-driven approach: new result which is compatible with measurement!?

Exciting times for g-2!!

Proton stability

- Proton is stable in SM (Baryon number conservation)
- Grand Unified Theories can predict that the proton is not stable
- "Not stable" \rightarrow lifetimes >10³⁰ y

- Search for proton decay e.g. with Super-Kamiokande
 - 27.5 T of Water → many protons
 - $\circ \quad \text{Search for } p \to \ell^{\scriptscriptstyle +} \, \pi^0$
 - Proton lifetime > 10^{34} y
- Multiple models excluded, but still room for SUSY ;)

DESY.

arxiv:2010.16098

Summary

- Many, many searches / experiments targeting BSM physics
- Constraints on many model parameters, yet not clear what BSM physics is
- Many exciting experiments/results coming up investigating BSM physics further, e.g.
 - HL-LHC
 - XENON n-ton
 - ALPS II
 - BabylAXO
 - g-2 full data set
 - Hyper Kamiokande
 - ...and many more!
- What will we find?

https://thumbs.dreamstime.

Thank you

Backup slides

Stop-2L: statistical analysis

1. Triggering

2. Event selection & background estimation

SUSY-2018-08

3. Statistical analysis

How compatible is the data with the Standard Model prediction? (Data Analysis lecture) $\ell = -2\ln\left(\frac{\mathcal{L}(\mathsf{data}, \mathcal{H}_1)}{\mathcal{L}(\mathsf{data}, \mathcal{H}_0)}\right)$

3a) If very compatible \rightarrow up to which x-sec. can I exclude BSM physics? \rightarrow *exclusion limits*

3b) If not compatible \rightarrow check 10³⁵x for mistakes \rightarrow CELEBRATE!!!

Page 54

Direct detection Dark Matter searches

- Assume: permanent flow of DM particles through planet earth
- DM scatters with SM particles
 → measurable!
- DM scatters with nuclei as no EM int.
- No. scattered DM particles depends:
 - \circ Density of DM → from rotation curve: ρ₀=0.3 GeV/c²/cm³ (±50%)
 - DM velocity w.r.t. planet earth,
 ~220 km/s with some variation
 - DM-nuclei cross-section
 - Mass of DM & interacting nuclei
 - Spin of DM particle and sensitivity of target material

DESY.

<u>1903.03026</u>

Indirect detection all in one slide

https://www.mpi-hd.mpg.de/lin/events/isapp2011/pages/lectures/de_los_Heros.pdf

Contact

DESY.

Deutsches Elektronen-Synchrotron

www.desy.de

Ben Brüers ATLAS group (Zeuthen) ben.brueers@desy.de +49 33762 7-7640