Search for Hexaquarks in CMS at the LHC – feasibility study

Szymon Sławiński (University of Warsaw)

supervisors: Jeremi Niedziela Juliette Alimena

4 September 2023

DESY Summer Student Presentation

What are hexaquarks?

Bound states of 6 quarks

- 6 quarks (anti-quarks) sexaquarks; DM candidate
- 3 quarks + 3 anti-quarks hexaquarks

What are hexaquarks?

Bound states of 6 quarks

- 6 quarks (anti-quarks) sexaquarks; DM candidate
- 3 quarks + 3 anti-quarks hexaquarks

Example:


$$p + \bar{\Lambda} = uud\bar{u}\bar{d}\bar{s}$$

Expected mass
$$> m_p + m_{\Lambda} = 2053$$
 MeV

Expected width: 0.1-1~GeV (general lifetime of systems decaying through strong interaction)

Why should we search for hexaquarks now?

- recent discovery of pentaquarks at LHCb (2015)
- PDG
 - $K_2(2250) \to K\pi\pi$ based on papers from 70s, 80s
 - $K_3(2320) \to p\bar{\Lambda}$ "needs confirmation"
- femtoscopic correlations

Measurement of strange baryon-antibaryon interactions with femtoscopic correlations, S. Acharya et al. Physics Letters B, Volume 802, 2020, 135223

3 meson decay

$$p + \bar{\Lambda} = uud\bar{u}\bar{d}\bar{s}$$

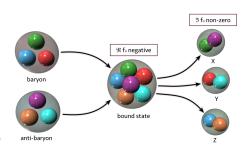
•
$$u\bar{s} + d\bar{u} + u\bar{d} = K^+ + \pi^+ + \pi^-$$

•
$$u\bar{s} + u\bar{u} + d\bar{d} = K^+ + \pi^0 + \pi^0$$

•
$$d\bar{s} + u\bar{u} + u\bar{d} = K^0 + \pi^+ + \pi^0$$

$$\Lambda_c + \bar{\Lambda}_c = udc\bar{u}\bar{d}\bar{c}$$

•
$$u\bar{u} + d\bar{d} + c\bar{c} = \pi^0 + \pi^0 + J/\psi$$


•
$$u\bar{u} + d\bar{c} + c\bar{d} = \pi^0 + D^- + D^+$$

•
$$d\bar{u} + u\bar{c} + c\bar{d} = \pi^- + \bar{D}^0 + D^+$$

•
$$d\bar{u} + u\bar{d} + c\bar{c} = \pi^- + \pi^+ + J/\psi$$

•
$$c\bar{u} + u\bar{c} + d\bar{d} = D^0 + \bar{D}^0 + \pi^0$$

•
$$c\bar{u} + u\bar{d} + d\bar{c} = D^0 + \pi^+ + D^-$$

Background

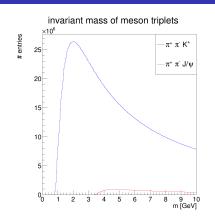
- high combinatorial background due to 3 body decay
 - solution: event mixing take 3 particles from different events to recreate combinatorial background

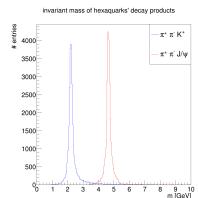
Background

- high combinatorial background due to 3 body decay
 - solution: event mixing take 3 particles from different events to recreate combinatorial background
- particles decaying to 2 mesons will contribute to background in a way that is not recreated by event mixing

Simulating hexaquarks with Pythia

A hexaquark can be simulated by changing properties of a particle that already exists in Pythia.


The following commands change B^0 meson's mass to 4.650 GeV and width to 0.2 GeV. The decay channels are set to π^0 π^0 J/ψ and π^+ $\pi^ J/\psi$


```
511:all = lclc anti_lclc 1 0 0 4.650 0.2 0 -1 0.

511:oneChannel = 1 1 0 111 111 443 # pi0 pi0 J/psi

511:addChannel = 1 1 0 211 -211 443 # pi+ pi- J/psi
```

Invariant mass of meson triplets

- (a) Invariant mass of all meson triplets (b) Invariant mass of all meson triplets
 - originating from a hexaguark decay

Figure: Red color indicates hexaquark($\Lambda_c\bar{\Lambda}_c$) $\to \pi^+ \pi^- J/\psi$ signal sample; blue color indicates hexaguark $(p\bar{\Lambda}) \to \pi^+ \pi^- K^+$ signal sample

Leading muon p_T

Signal: hexaquark $(\Lambda_c \bar{\Lambda}_c) \rightarrow \pi \ \pi \ J/\psi$ $J/\psi \rightarrow \mu \ \mu$

Background: default settings – no hexaquark

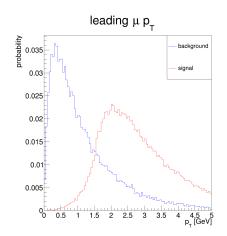


Figure: Transverse momentum of a leading μ in background and signal sample

CMS triggers efficiency

- HLT_Dimuon0_Jpsi3p5_Muon2_v
 - \bullet at least 2 μ with opposite charge
 - at least 1 μ with $p_T > 2$ GeV
 - at least 1 J/ψ with $p_T > 3.5$ GeV
- HLT AK8PFJet550 v
 - at least 1 jet with $p_T > 550 \text{ GeV}$
- HLT_PFHT1050_v
 - sum of all jets' $p_T > 1050 \text{ GeV}$
- HLT_lsoMu24_eta2p1_v
 - at least 1 μ with $p_T >$ 24 GeV; $|\eta_{\mu}| <$ 2.1
- HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8_v
 - ullet at least 2 μ with opposite charge
 - ullet at least 1 μ with $p_T >$ 17 GeV
 - at least 1 μ with $p_T > 8$ GeV
 - ullet invariant mass of μ pair > 3.8 GeV

 $|\eta_{jet}| <$ 3.0 and $|\eta_{\mu}| <$ 3.5 for all triggers

CMS triggers efficiency

 $p\bar{\Lambda}$ – hexaquark($p\bar{\Lambda})\to\pi^+~\pi^-~K^+$ signal sample $\Lambda_c\bar{\Lambda}_c$ – hexaquark($\Lambda_c\bar{\Lambda}_c)\to\pi^+~\pi^-~J/\psi$ signal sample background – sample without a hexaquark implemented

	pΛ	$\Lambda_c \bar{\Lambda}_c$	background
HLT_Dimuon0_Jpsi3p5_Muon2_v	< 0.02%	2.4%	0.05%
HLT_AK8PFJet550_v	< 0.004%	< 0.004%	< 0.004%
HLT_PFHT1050_v	< 0.004%	< 0.004%	< 0.004%
HLT_lsoMu24_eta2p1_v	< 0.004%	< 0.007%	< 0.004%
HLT_Mu17_TrklsoVVL_Mu8	< 0.004%	< 0.004%	< 0.004%
_TrkIsoVVL_DZ_Mass3p8_v	< 0.004%	< 0.004%	< 0.004%

Table: Fraction of events that fulfil the trigger conditions. Upper limits are given at 95% C.L.

Relatively low (2.4 %) passing rate for $\Lambda_c \bar{\Lambda}_c$ is due to 5% BR of $J/\psi \to \mu\mu$

Conclusions

- changing particle properties is a viable method of simulating hexaquarks in Pythia
- heavier hexaquarks may be easier to discover
 - smaller combinatorial background
 - ability to use J/ψ triggers
- high rate (in comparison to background) of events containing a $\Lambda_c \bar{\Lambda}_c$ hexaquark passing a J/ψ trigger