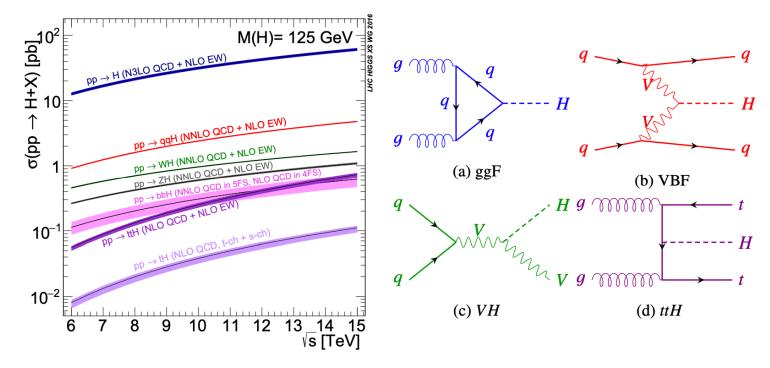


SMEFT Studies for ttH(bb) Channel

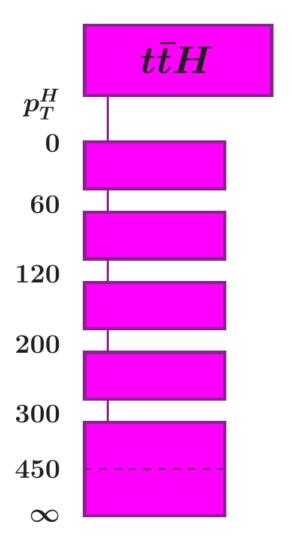
Punnawich Chokeprasert,


Aliya Nigamova, Rainer Mankel

DESY-CMS group

DESY Summer Student Programme 2023

Observation of Higgs and ttH to bb channel


- Higgs measurements in Run 2 at LHC
 - The production of Higgs in different mode:

Especially ttH allows a direct measurement of the Higgs boson coupling to the top (the heaviest particle in the SM) → interesting to search for hints of BSM physics

Simplified Template Cross Sections (STXS)

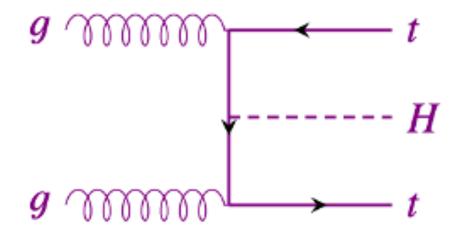
- Many measurements? → combine them → STXS
- Separate more clean measurement and interpretation steps to reduce the theoretical uncertainties that are folded into the measurements
- Breaking Higgs creation into different categories bins
- Criteria for selecting bins:
 - Capture deviations from the SM predictions
 - Avoid regions with high theoretical uncertainty
 - Try to match the experimental methods used to detect the Higgs as closely as possible, reducing the need for guesses about how things work

DESY.

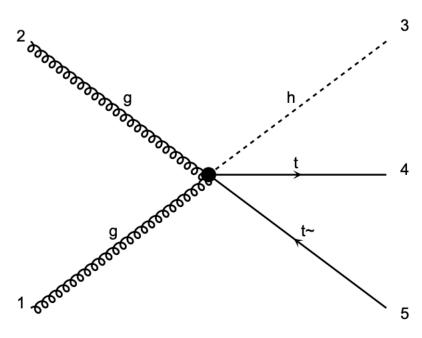
Effective Field Theory (EFT) approach

Just Quantum Field Theory (QFT) but without restriction of renomalizability

Assume the quantum numbers of SM particles are correct (the structure of dimension ≤ 4


terms in the Lagrangian)

Contain all possible higher-dimentional operators


V	Warsaw basis		
$L_{EFT} = L_{SM} +$	$\sum_{j} \mathcal{O}_{j}$	c_j	
	Wilsor	coefficient	

Wilson coefficient	Operator	Wilson coefficient	Operator
$c_{H\square}$	$(H^\dagger H)\Box(H^\dagger H)$	c_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$
c_{HDD}	$\left(H^\dagger D^\mu H\right)^* \left(H^\dagger D_\mu H\right)$	c_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W_{\mu\nu}^I$
c_{HG}	$H^\dagger H G^A_{\mu u} G^{A\mu u}$	c_{uB}	$(ar{q}_p\sigma^{\mu u}u_r)\widetilde{H}B_{\mu u}$
c_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	c_{ll}'	$(ar{l}_p \gamma_\mu l_t) (ar{l}_r \gamma^\mu l_s)$
c_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	$c_{m{q}m{q}}^{{}_{m{q}}}$	$(ar{q}_p\gamma_\mu q_t)(ar{q}_r\gamma^\mu q_s)$
c_{HWB}	$H^\dagger au^I H \overset{\iota}{W}^I_{\mu u} B^{\mu u}$	$c_{m{q}m{q}}^{_{(3)}}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$
c_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$	c_{qq}	$(ar q_p \gamma_\mu q_t) (ar q_r \gamma^\mu q_s)$
c_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	$oldsymbol{c_{oldsymbol{qq}}^{_{(31)}}}$	$(ar{q}_p \gamma_\mu au^I q_t) (ar{q}_r \gamma^\mu au^I q_s)$
c_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}\widetilde{H})$	c_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
$c_{Hl}^{{\scriptscriptstyle (1)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	$c_{uu}^{{\scriptscriptstyle (1)}}$	$(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$
$c_{Hl}^{_{(3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	$c_{m{qu}}^{{\scriptscriptstyle (1)}}$	$(\bar{q}_p\gamma_\mu q_t)(\bar{u}_r\gamma^\mu u_s)$
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	$c_{\it ud}^{^{(8)}}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$
$c_{m{H}m{q}}^{ ext{ iny (1)}}$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_r)$	$c_{m{qu}}^{_{(8)}}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$
$c_{m{H}m{q}}^{^{(3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$c_{m{q}m{d}}^{^{(8)}}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_W	$\epsilon^{IJK}W^{I}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$
c_{Hd}	$(H^{\dagger}i\overrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$

SM

Standard Model Effective Field Theory (SMEFT)

- Introduce the framework includes additional higher-order interactions that follow the symmetries of the SM → SMEFT
- Analyzing Higgs data alongside all Higgs production precision measurements
- Generally exploration and model-independent

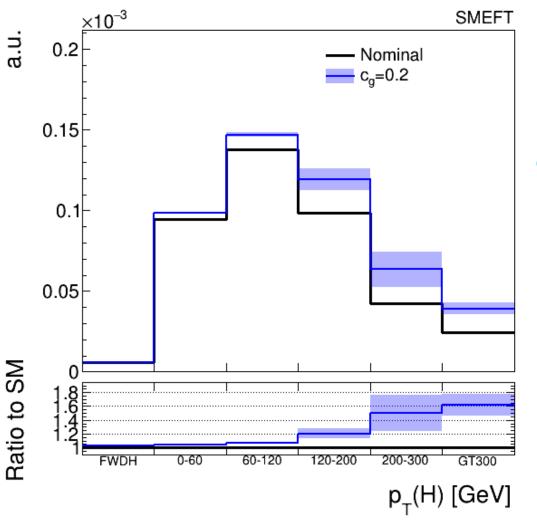
$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + ...,$$
BSM effects SM particles

dimension-5 & 7 violate lepton and/or baryon number conservation and not relevant for Higgs physics

EFT2Obs

- How do the operators of SMEFT affect the differential cross sections that we measure?
- Scaling of each bin i .. of course, automatically

$$\sigma_{i}^{SMEFT} = \sigma_{i}^{SM} + \sigma_{i}^{int} + \sigma_{i}^{BSM} \qquad \frac{\sigma^{int}}{\sigma^{SM}} = \sum_{i} c_{i} A_{i}$$


$$\mu_{i} = 1 + \sum_{j} c_{j} A_{i,j} + \sum_{j,k} c_{j} c_{k} B_{i,jk} \qquad \frac{\sigma^{BSM}}{\sigma^{SM}} = \sum_{i,j} c_{i} c_{j} B_{i,j}$$

- By EFT2Obs A tool to automatically parametrize the effect of EFT coefficients
- Based on Madgraph5_aMC@NLO + RIVET

used with many UFO define Higgs STXS

models: SMEFTsim

EFT2Obs

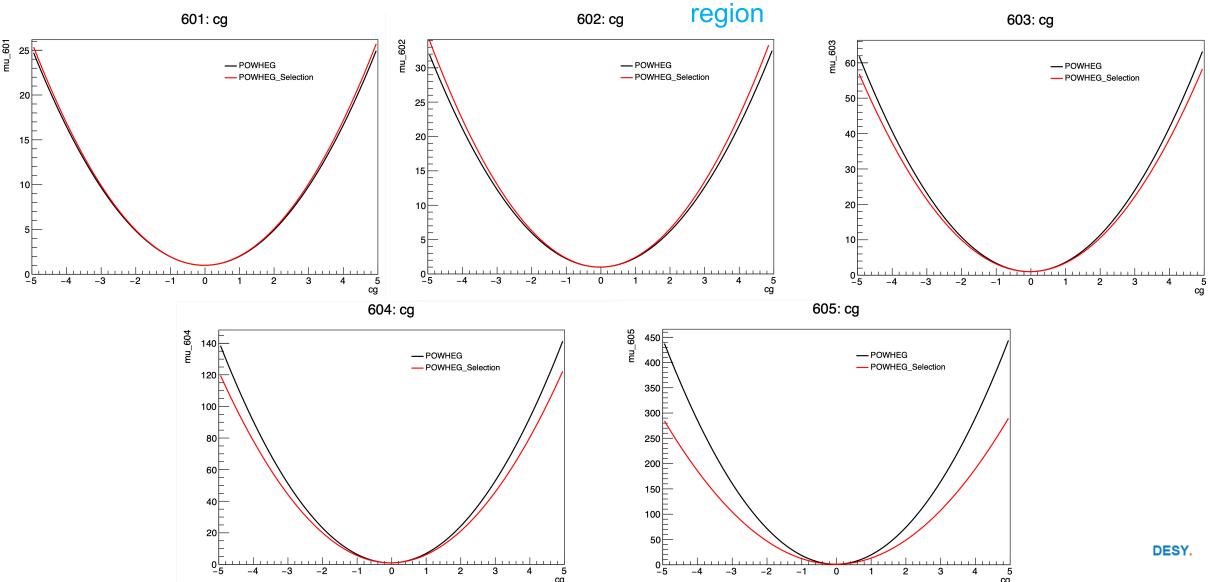
EFT introduce shape effect especially noticeable in large pT(H) range

the histogram overlaying the expectation for arbitrary values of the parameters

NanoAOD-tools

- In real analysis, phase space is modified by event selection.
- SMEFT prediction produced for all ttH events might not represent the analysis phase space correctly.
- Since it is costly and time-consuming to generate SMEFT events, we reweight SM samples using Madgraph Matrix Element reweighting.

Model \rightarrow Weights $(c_i) \rightarrow$ Event generation \rightarrow Full simulation \rightarrow Hypothesis (c_i)


→ Move the EFT reweighting to the last step:

Model → Weights → Event generation → Full simulation

$$W_{C_j>0} = \frac{\mathcal{M}_{\mathrm{SMEFTsim}}(C_j>0)}{\mathcal{M}_{\mathrm{SM}}} \cdot W_{\mathrm{SM}}$$
 ... Weights $(c_1) \to \mathrm{Hypothesis}\; (c_1)$... Weights $(c_i) \to \mathrm{Hypothesis}\; (c_i)$

Compared Measurement

Acceptance effects become non-negligible in high pT(H)

Summary

- This studies will be use in CMS Run 2 Higgs combination.
- In this project, I learn about Higgs physics, EFT, SMEFT, STXS, combined measurements techniques, analysis techniques etc.
- I use EFT2Obs to produce SMEFT events winth Madgraph also write a scripts to extract files and make plots of parametrization.
- Therefore, I used NanoAOD-tools to analyze and reweight CMS MC events.
- I would like to say 99% of this work is what I learn from this programme and it's very helpful for me, I'm enjoy to learn it.