Digitization procedure of MC simulation of LUXE ECAL

Author: Kamil Zembaczyński, University of Warsaw

Advisor: Wolfgang Lohmann, Deutsches Elektronen-Synchrotron

Goals and analysis setup

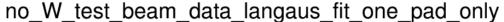
Goals:

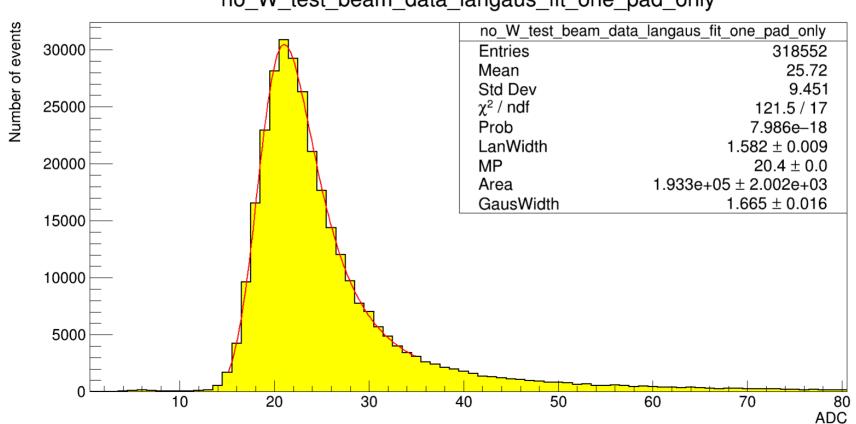
- Propose a procedure of converting energy deposits from Geant4 simulation into ADC units,
- Adjust calibration parameters to obtain agreement between TB results and MC simulation

Files used:

- TB_FIRE_4533.root: TB data collected on 15.09.2022 with CALICE 74 Si sensor (500um), 1M events, electron energy: 5GeV
- Si-e-5GeV-500um-ev500k.root: Geant4 simulation, 500k events,
 500um CALICE sensor, electron energy: 5GeV, generated by
 Mihai Potlog

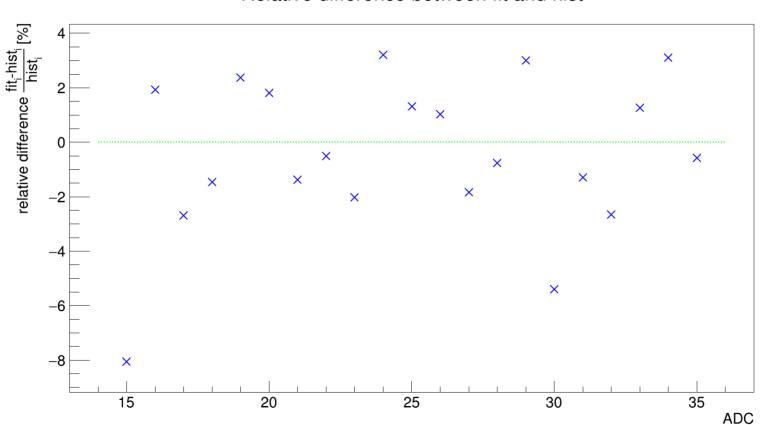
Convoluted Gaussian and Landau distribution


- Shan Huang implementation of convoluted Landau and Gaussian distribution was used.
- Based on Tmath::Landau function from ROOT.
- Parameters:
 - par0 LanWidth,
 - par1 MP,
 - par2 Area,
 - par3 GausWidth.


```
Double t langaufun(Double t x, Double t par0, Double t par1, Double t par2, Double t par3) {
       Double t invsq2pi = 0.3989422804014;
       Double_t mpshift = -0.22278298;
        Double t np = 100.0;
        Double t sc =
        Double t xx:
        Double t mpc;
        Double t fland:
        Double t sum = '0.0;
       Double t xlow, xupp;
       Double t step:
        Double t i;
       mpc = par1 - mpshift * par0;
        xlow = x - sc * par3;
       xupp = x + sc * par3;
       step = (xupp-xlow) / np;
       for(i=1.0; i<=np/2; i++) {
    xx = xlow + (i-.5) * step;
    fland = TMath::Landau(xx,mpc,par0, 0) / par0;
    sum += fland * TMath::Gaus(x,xx,par3);</pre>
           xx = xupp - (i-.5) * step;
           fland = TMath::Landau(xx,mpc,par0, 0) / par0;
sum += fland * TMath::Gaus(x,xx,par3);
       return (par2 * step * sum * invsq2pi);
```

Fit setup

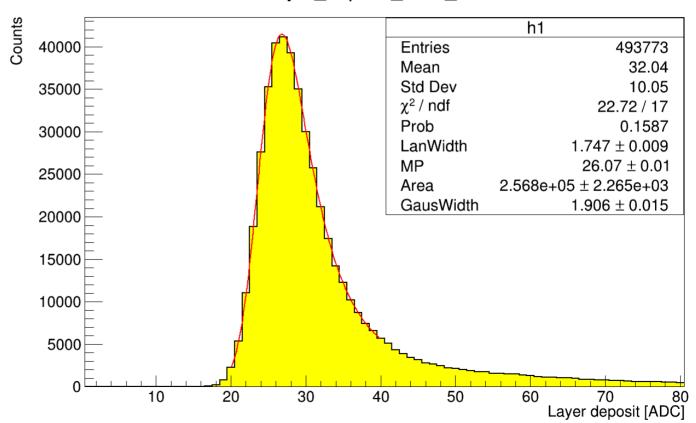
- Langaus function has four parameters:
 - LanWidth: scale parameter of Landau distribution
 - MP: MPV of Landau distribution
 - Area: total area, normalization constant
 - GausWidth: sigma of convoluted Gaussian function
- Langaus function was fitted to histogram with distribution of energy deposits in sensor in each event
- Events with only one hit were selected to minimize effects caused by secondary particles


Langaus fit to TB data

Langaus fit to TB data

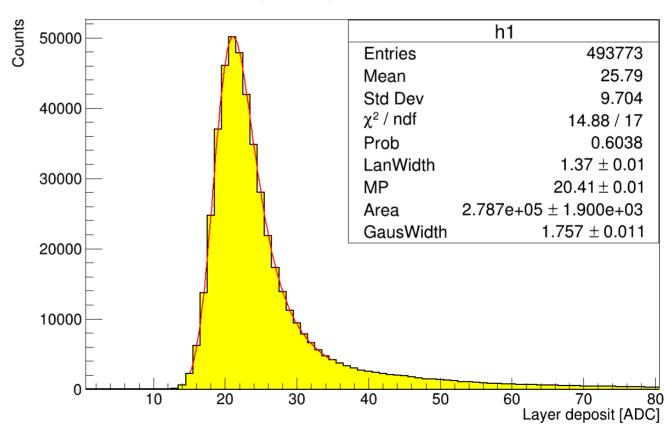
Relative difference between fit and hist

Conversion procedure

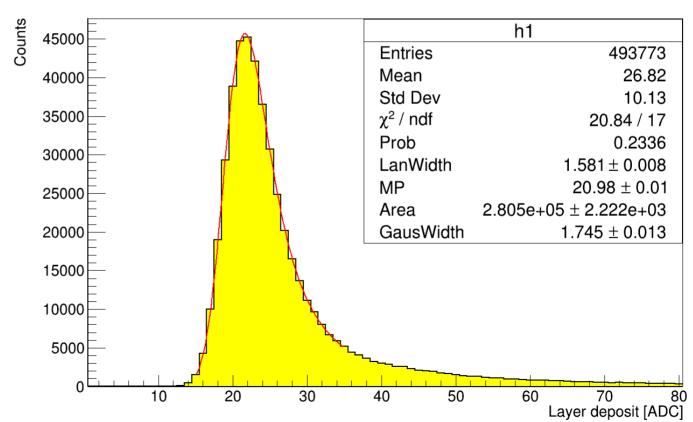

- Conversion procedure from MeV to ADC:
 - Conversion from MeV to fC using calibration factor: a*3.6 eV/fC, where a is an adjustable parameter,
 - Conversion from fC to ADC using gain factor for high-gain: 4.07
 ADC/fC, saturation at 200 fC,
 - Applying Gaussian variation with sigma equal to noise parameter, which is taken from pedestal measurements,
 - (Adding number from Landau distribution with mean equal to zero and adjustable scale parameter (LanPar) to deposit in ADC).
- Only events with deposit in one pad was selected

Noise level

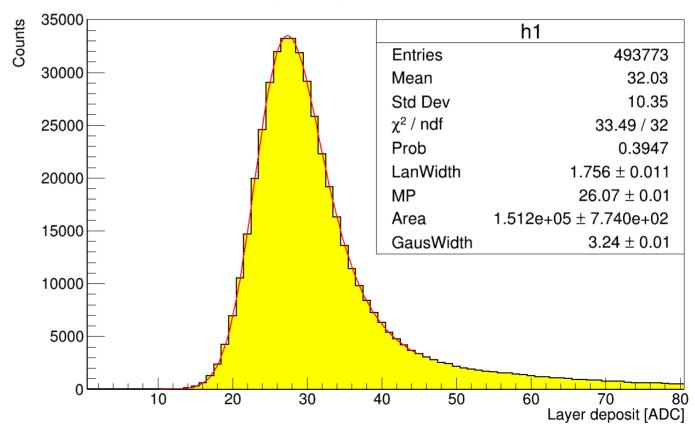
- Level of electronics noise was calculated as a mean of standard deviations of pedestals measured before data taking during TB in 2022,
- Noise data was provided by Marek Idzik,
- Pedestals collected at 10:18 on 15.09.2022 were used,
- Mean of the pedestals' standard deviations is 1.478 ADC, channels with zero pedestal's standard deviation were omitted.


Langaus fit to MC sample

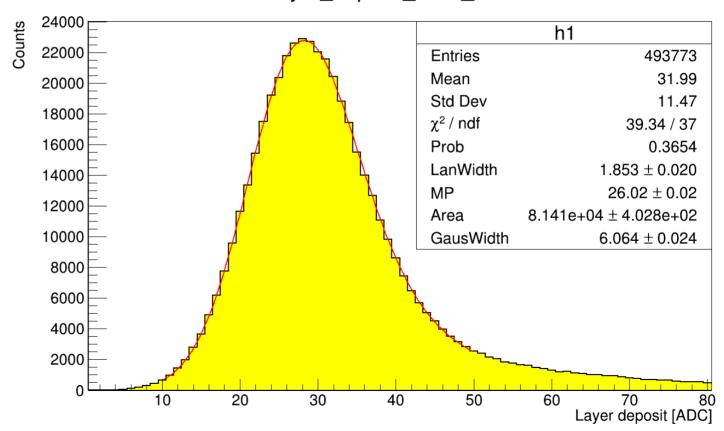
- noise = 1.478 ADC
- a = 1
- LanPar = 0
- MP value bigger than in TB
- GausWidth too big
- LanWidth too big


Applying calibration factor

- noise = 1.478 ADC
- a = 26.07/20.4 = 1.2779
- LanPar = 0
- MP value in agreement with TB
- GausWidth slightly too big
- LanWidth too small


Adjusting LanPar

- noise = 1.478 ADC
- a = 26.07/20.4 = 1.2779
- LanPar = 0.212
- MP slightly too big
- · GausWidth slightly to big
- LanWidth in agreement with TB


Fit with different noise

- noise = 3 ADC
- a = 1
- LanPar = 0
- GausWidth changes comparing to fit from slide 9

Fit with different noise

- noise = 6 ADC
- a = 1
- LanPar = 0
- GausWidth changes comparing to fit from slide 9
- LanWidth weakly depends on noise

Conclusions

- Changing noise influences only GausWidth parameter, not the MPV and LanWidth,
- Adding noise from empty channels shifts MPV, GausWidth and LanWidth towards bigger values,
- Parameters of conversion procedure (noise, calibration factor, LanPar) can be adjusted to reproduce the shape of deposits distribution from TB (work in progress),
- Why the width of Landau distribution doesn't agree between TB and MC?

References

- 1) Jakub Moroń, FLAME SoC readout ASIC for electromagnetic calorimeter, TWEPP 2022,
- 2) Marek Idzik, *The FLAME and FLAXE ASICs,* XII Front-End Electronics Workshop 2023,
- 3) Wikipedia properties of Landau distribution.