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> Need Monte Carlo events @ higher ordersin «

> Higher-order matrix elements are slow to evaluate
numerically

> Moreover, need to evaluate these matrix elements
many times



For instance, time to generate 1 million events s.t. MC statistical
error1/vV'N ~ 107°

time/point [s] unwgt. efficiency CPU time

1 100% 12 days
10 100% 116 days
10 1% 32 years

1000 10% 317 years

This is not just about speeding up - it’s about making the
impossible possible



process LO runtime estimate  NLO runtime estimate  NNLO runtine estimate
(8{process_id})  for 10~ % uncertainty  far 10~ uncertainty for 10°% uncertainty

‘E’:P‘h;:]’ 2 CPU seconds 1 CPU minute 19 CPU days
‘E':P:;ﬁ 4 CPU seconds 1 CPU minute 11 CPU days
“‘t’p;““;"l] 2 CPU seconds 1 CPU minute 10 CPU days
"(‘;P :xl;l']l 5 CPU seconds 2 CPU minutes 11 CPU days
tpp;a‘x 0;; 28 CPU seconds 12 CPU minutes PU days
Ei:n ;;:;"]’;] 1 CPU minute 4 CPU minutes 18 CPU days
il m‘;a 1 CPU minute 16 CPU minutes 21 CPU days
;’;;;;ﬂ;a 1 CPU minute 15 CPU minutes 214 CPU days
?’;’P; ‘;‘2"]’ 1 CPU minute 19 CPU minutes 6 CPU days
"(‘; ;e;ag__:]"’ 9 CPU minutes 4 CPU hours 167 CPU days
o aar ”";;:] 1 CPU minute 1 CPU hour 17 CPU days
?ﬁp;;xi:] 13 CPU minutes 9 CPU hours CPU days
?:p;;;a:g 17 CPU minutes 1 CPU day 443 CPU days
‘;‘;P ‘Z’Zf?]z 1 CPU minute 4 CPU minutes 25 CPU days
""E;x:ﬂ;‘]’ 1 CPU minute 4 CPU minutes 13 CPU days
B ﬁ;;“:m'ﬂ;]“' 2 CPU minutes 20 CPU minutes 45 CPU days
WE;B‘“;;H:' 6 CPU minutes 1 CPU hour 193 CPU days
ﬁ;ﬁ;n;‘;bi‘] 3 CPU minutes 29 CPU minutes 31 CPU days
‘Eﬁ;ﬂ; n:; :bf]' 7 CPU minutes 4 CPU hours 119 CPU days
‘t’;’;e;m;:o:] 10 CPU minutes 4 CPU hours I days
”(’P;;ﬁ‘;m: D‘ju 3 CPU minutes 26 CPU minutes 19 CPU days
";;) P‘;;"m;c: 4‘_‘]” 6 CPU minutes 1 CPU hour 39 CPU days
”(’P;;m"!:c:‘i‘;" 4 CPU minutes 1 CPU hour 21 CPU days
"a) P‘;;“;;c:;f 6 CPU minutes 4 CPU hours A4 CPU days

- MATRIX
o CPU budget

(total runtime)

[Grazzini, Kallweit, MW "1 7]
from seconds at LO
diphoton ¢4 minutes at NLO
todays at NNLO

Wy (MATRIX not optimized
for simple processes)

diphoton fastest NNLO process
WY slowest NNLO process
(dependents on fiducial cuts!)
off-shell diboson processes
from minutes at LO

to hours at NLO
to days at NNLO

Slide by Marius Wiesemann



ATLAS Computing Budget, e.g.

ATLAS Preliminary
2022 Computing Model - CPU: 2031, Aggressive R&D

2% 11%  Tot: 16.6 MHS06*y

Wall clock consumption per workflow

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons
Data Deriv
MC Deriv
Analysis

7%

@ MCsimulation @ MC reconstruction @ MC event generation 7%
@ Analysis @ Group production @ Data processing
@ Other

But remember the goal: impossible — possible



Machine Learning

© UNIVERSAL APPROXIMATION THEOREM: “...any multivariate
continuous function can be represented as a superposition of
one-dimensional functions” (Neural Networks/sigmoid)
[From Braun, J. & Griebel, M. Constr Approx (2009)]

> In practice, convergence is non-trivial (and not guaranteed)
v/ Gradient boosting machines perform extremely well

v/ Deep neural networks with special architectures do even better
for higher dimensions



Why is it reasonable to approximate?

> There are many sources of error:

— Experimental: statistics, JES/JER, tagging, ...,
— Theoretical: PDF, o, ...,

— Monte Carlo statistics ~ O(1073),
> this guides the approximation precision requirement

> and...



process

(${process_id}) 70 NLO (mmp;Z‘:ﬁxﬁLo) 7o L Knio Ko
’(’:’ P;OZzZ) 9.845(1)*3%% pb 14.10(0)*25% pb 1'36(1;%%;3 Pb 16.68(1) 52 pb  16.67(1)732%ph  +43.3%  +18.2%
P ”(;‘Z;Zi 66.64(1) 2 7% pb  103.2(0) 9% pb 4'09(1;35%22 PP 7A(1)2 e +549%  +13.4%
Grazzini, Kallweit, Wiesemann [1711.06631]
LO (60%)
—
NLO (25%)
gg 1-loop _|
squared
e 1o0n NNLO (15%)
squared

Tree x 2-loop interference ~20% of the
NNLO contribution...

... but O(100-1000) times slower than 1-

loop amplitudes



> High-Precision Regressors for Particle Physics
F. Bishara, A. Paul, J. Dy. Paper submitted to Nature Scientific
Reports for peer-review (now in 2" round)  [arXiv:2302.00753]

> Skip Connections for High Precision Regressors
F .Bishara, A. Paul, J. Dy. Machine Learning and the Physical
Sciences, Workshop at the 36th Conference on Neural
Information Processing Systems (NeurlPS 2022)

> Machine Learning Amplitudes for Faster Event Generation
F. Bishara and M. Montull. Phys. Rev. D 107 (2023) no.7,
L071901 [arXiv:1912.11055]


https://arxiv.org/abs/2302.00753
https://arxiv.org/abs/1912.11055

Physics guidance and considerations

Functions span many orders of magnitude, transform

fz) =

log(l+z) >0
—log(l—2z) <0

Symmetries allow to reduce a set of 18 functions to just 4

Improve NN performance by constructing linear combinations
of functions with nicer properties (e.g. symmetry)

How to generate a training sample over the domain?
Generally, sample uniformly
Some variables need to be sampled log-uniformly - need to
invert transformation s.t. point density is uniform!



A first example: 2d function with boosted decision

tree
el [%]
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Relative error [%)]

Exact: ~ 16s/point
Approximate: ~ 16s /1M points

Approximation is 10° times faster with relative error < 1073 !

lw

10



Neural network with skip connections

11



The Amplitudes



pp 24l @ NNLO (double virtual)




The phase-space

on-shell 2 — 2 [2d]
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Two-loop matrix element 10 tensor structures
@LOonly4: 1%, ..., Tig
form factors = scalar
functions of kinematic vars.

" | :
T (s,t,03,08) = > |D_Aj(s,t) T!" e} (p3) € (pa)

pols,cols |7=1

Squared amplitude:

- T tphpd) = 2R (MOIMP) ) + (MO

. . lepton amps. are simple:
K .
. ®:VV< x (3v,4] and [3v,4)
e R AN
%

8d P.S. 4d P.S. + 2 x 2d P.S.

Form factors computed using VVAMP
[Gehrmann, von Manteuffel, Tancredi [1503.04812]] 15



Two paths to approximate

k-factor

XTI
- Couplings cannot be
)

2

factored out (frozen-in

- Phase-space is 8-dim.

- Can sum over helicities >
only one function per
process

(sub)-amplitudes

- Couplings can be factored
out (at least when sum of
Qi=0)

- Phase-space is 4-dim.

- Can be recycled for different
vector boson combinations
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[Work in progress with Ayan Paul]
> Goal: implement into MC generators, many details to consider

want functions that can be recycled — couplings factored out
and for this, approximate amplitudes (i.e. not squared)
amplitudes are complex objects f : R% — C

want V7 and V5 off-shell but don’t want leptons so 4d

> Therefore, have 2 x 3 x 3 = 18 amplitudes in principle
v/ Amplitudes have symmetries — reduced set

> Nice choice of reference momenta — more symmetry
— simultaneous light-cone decomposition of p3 and p4 leads to

<47u3] + <3”Yu4] - <3%L4] + <47u3]

T sy ST BB T VREY T VAl

- in C.M. frame with p3 and p4 pointed along +Z direction and

with appropriate choice of spinor phases, (34) = [43]

17



Only 4 /18 amplitudes can generate the full set

Jt and 5 parts of the amplitudes are correlated — natural to
output them together (trivial for NNs)

In the future, could be a good application for complex
activation functions

For now, ignore complications that arise if the two pairs of
leptons have the same flavor

18



Populating the
Phase-Space



qq — AV [FB & A. Paul [work in progress |]

> Map full phase-space to unit hypercube
\/S12 € :m34 + Mg, 14 T@V] — [O, 1]

cosf* € [—1,1] — [0, 1]
M3y, M5 € 50, 130] GeV — [O, 1]

— otherwise no cuts on P.S.!
- two options to extend m;; even up to 14 TeV to cover W boson

> The scattering angle of Z(p34) is defined as

Tt —u

S A

cos 0" =

where s = 515 and A s the Kallén function A(1, J2%, 75 )

20



Normalized distribution

Normalized distribution

Earlier results: uniform up to 500 GeV
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qq — AV [FB & A. Paul [work in progress ]

> Amplitudes span many order of magnitude (and can be
negative of course) — transform according to

log(l4+x) x>0
f(x)=4¢—log(l—2) x<0
0 otherwise

e? ~ O(10%)

22



> Training the network is done on the full phase-space, uniformly
populated except for s;, because...

1.0
0.8 4

0.6 4
|

cos 0*
cos 0™

0.4 :
|

- 0.5
024

—- 0.0

0.0 L1

I I I . I I
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

™ before after

V512

> Populate s15 log-uniformly

CDF(z) — %log{l L — 1))

* PS from unweighted LO events generated with MadGraph



> The mss — msg is also clearly sparse if PSis uniformly
populated but, for now, keep it asis

1.0 5 : ! \ ' _
0.8 1 4 i ]
St
=R |
2 |
06 =] % 3 n -
% = :
g < [
g 1
04 - T‘g 2 F -
£
S i ]
02 = 1 __ j
0.0 T T 1 | 0 I &J‘J{ 1 n
0.0 0.2 0.4 0.6 0.8 1. —1.0 —0.5 0.0 0.5 1.0

Relative error [%)]

Trained on uniformly populated masses
predictions in a very small region of PS!

T34

Of course can/should improve this
l.e. by distributing according to a wide Cauchy dist. 24



Normalized distribution

—1.0

1

> Approximation of 2R{ M © M@}
> Relative error is sub-percent

(~ 0.01% on total)

> Runsin < 2 milliseconds per

phase-space point

> Code to produce this:

L

Fortran prog. (no ext. dep.)
reads parameter files (a few MB)
takes in phase-space coords
outputs helicity amplitudes

1

—0.5 0.0
Relative error [%)]

0.5

1.0
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K-Factors



> “Toy” process just to establish generalization to higher dims.
|FB, Ayan Paul, Jennifer Dy; https://ml4physicalsciences.github.
i0/2022/files/NeurIPS_ML4PS_2022_164.pdf]
[FB, Ayan Paul, Jennifer Dy; [2301.XXXXX]]

r D 2
—_—\ NN —_——e N

2% 4 X -+

—aNNN

- -

This study only includes
classes [A] + [B]

—NNN

> Compute (|(M|*) for gqqg — ZZ(— 4£) using VVAMP
- Training: 4.8M points
- Validation: 3.2M
- Testing: 2M




0 distribution for 2D sk-DNN regressors 0 distribution for 2D BDT regressors
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0 distribution for 4D sk-DNN regressors

0 distribution for 4D BDT regressors

16 16
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0 distribution for 8D sk-DNN regressors

0 distribution for 8D BDT regressors
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Summary and outlook

Approximate double-virtual amplitudes can leapfrog MC
generation times for some processes

Implementation soon in MCFM, then in GENEVA and hopefully
also MATRIX

Many many future directions and application to other
amplitudes, e.g., including gluon-induced di-bosons @NLO, top
mass in the loop, 5-point 3-photon two loop amplitude, etc.
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