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Non-linearities
Thesis B. Vormwald

• Want to know the Number of Compton electrons in each detector channel but we actually get a digital electronic signal

• In an ideal world the relation between them is perfectly linear

→ would need only one measurement of Number of electrons and corresponding signal output to calibrate

• In real world measurement devices are not linear!

Compton 

electrons

In addition to non-linearity there are also other effects (calibration differences between channels, time-

dependent variations) etc., will discuss those later

https://bib-pubdb1.desy.de/record/168227/files/DESY-2014-02428.pdf
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Sources of Non-linearities
Thesis B. Vormwald

Sources of non-linearities for our detector:

1) SiPM response

- at high photon densities, finite pixel number causes non-linearities

(pixels have to recharge O(10ns) after each breakdown avalanche)

- thermal noise, afterpulses, cross-talk

2) Readout non-linearities:

- unstable pedestal currents

- non-linearity in digitization step → depends on ADC implementation

Compton 

electrons

Correct these by measuring non-linearity!

https://bib-pubdb1.desy.de/record/168227/files/DESY-2014-02428.pdf
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Non-linearities

INL: Getting a high-light-yield stable short UV LED pulse is complicated! (exect O(40%) intensity variation)

• Detector response: measured signal (e.g. ADC) versus applied signal (e.g. incoming electrons per channel

→ ideally: linear function 𝐿 𝑥 = 𝐴0 + 𝐵𝑥𝑟𝑒𝑓 ∙ 𝑥

→ in reality: non-linear function 𝑇 𝑥

• Two anchor points: 𝐴0 = T 0 (Null measurement), 𝐵𝑥𝑟𝑒𝑓 =
𝑇 𝑥𝑟𝑒𝑓 −𝑇(0)

𝑥𝑟𝑒𝑓
(reference measurement at 𝑥𝑟𝑒𝑓)

• Two ways to express non-linearity: 

- integrated (difference between ideal and real)   INL x = 𝑇 𝑥 − 𝐿(𝑥)

- differential (difference in slope between ideal and real) DNL x =
𝑑

𝑑𝑥
𝑇 𝑥 − 𝐿 𝑥 =

𝑑𝑇(𝑥)

𝑑𝑥
− 𝐵𝑥𝑟𝑒𝑓

Thesis B. Vormwald

https://bib-pubdb1.desy.de/record/168227/files/DESY-2014-02428.pdf
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Differential non-linearity measurement
Thesis B. Vormwald

• Measuring DNL means measuring
𝑑𝑇(𝑥)

𝑑𝑥

• Approximate : 
𝑑𝑇(𝑥)

𝑑𝑥
=

𝑇(𝑥+∆𝑥)−𝑇(𝑥)

∆𝑥

Technical meaning:

𝑥: variable base signal (e.g. a variable LED pulse) 

∆𝑥: constant differential signal (e.g. second, constant low-intensity LED pulse)

𝑇(𝑥 + ∆𝑥): detector response with both signal at the same time

𝑇(𝑥): detector response with just base signal

• Consequence of constant differential signal: 
𝑑𝑇(𝑥)

𝑑𝑥
=

∆𝑇(𝑥)

𝑐
∝ ∆𝑇(𝑥), where 𝑐 is constant

• Now measuring DNL(x) means measuring 𝑥𝑖 ,
𝑑𝑇(𝑥𝑖)

𝑑𝑥
∝ 𝑥𝑖 , ∆𝑇(𝑥𝑖)

• For small integrated non-linearities, assume: 𝑥𝑖 ∝ 𝑇(𝑥𝑖)

• Extract information about non-linearity from 𝑇(𝑥𝑖), ∆𝑇(𝑥𝑖)
→ no more dependence on absolute signal 𝑥!

https://bib-pubdb1.desy.de/record/168227/files/DESY-2014-02428.pdf
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Linearisation

After this procedure, we know our detector response is linear, but we know the slope only to factor c!

→ Can correct using a complementary measurement (e.g. TB or in-situ calibration)

Thesis B. Vormwald

• Parametrize non-linearities in response:  𝑇 𝑥 = (𝐵𝑥𝑟𝑒𝑓 + 𝑛𝑙 𝑥 ) ∙ 𝑥

• Express ∆𝑇 𝑥 = 𝑐 ∙
𝑑𝑇 𝑥

𝑑𝑥
= 𝑐 ∙ (𝐵𝑥𝑟𝑒𝑓 + 𝑛𝑙 𝑥 + 𝑛𝑙′(𝑥) ∙ 𝑥)

• Solve for the non-linearity: 𝑐 ∙ 𝑛𝑙 𝑥 =
1

𝑥
׬ (Δ𝑇 𝑥 − 𝑐 ∙ 𝐵𝑥𝑟𝑒𝑓) dx

• Can show that: Δ𝑇 𝑥 = 𝑐 ∙ 𝐵𝑥𝑟𝑒𝑓

• And: 𝑐 ∙ 𝑛𝑙 𝑥 =
1

𝑥
׬ Δ𝑇 𝑥 dx − Δ𝑇 𝑥

• Linearisation correction factor: 𝐶𝑜𝑟𝑟 𝑥 =
𝐵𝑥𝑟𝑒𝑓

𝐵𝑥𝑟𝑒𝑓+𝑛𝑙 𝑥
=

𝑥∙ Δ𝑇 𝑥

׬ Δ𝑇 𝑥 dx

→ Completely independent from absolute calibration scale!

• Prescription:

- take measurements of 𝑇(𝑥𝑖), ∆𝑇(𝑥𝑖)
- fit a polynomial function Δ𝑇 𝑥
- calculate the correction factor using the integral and the average

# electrons

s
ig

n
a
l

# electrons

s
ig

n
a
l

BEFORE

AFTER

https://bib-pubdb1.desy.de/record/168227/files/DESY-2014-02428.pdf
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How to practically do the linearization?

• There is already a LED board from the Polarimetry setup (based on CALICE) that can produce the base and differential signals

• Requirement: - choose ∆𝑥 such that it is small compared to the calibration range of the photodetector and to the

full-scale range of the readout ADC (e.g. comparable to LSB)

- could be matching our requirements already?

Practical Procedure:

• Measure QDC spectra with and without the differential signal for varying base LED signals

• Get the mean of the QDC, and difference between means for base only vs. base+ differential

• Fit polynomial function and proceed with linearization
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Linearization with Mylar foil?

• Since LED boards did not work, fashioned a O(10%) attenuator from Mylar foil

• Requirement: - choose ∆𝑥 such that it is small compared to the calibration range of the photodetector and to the

full-scale range of the readout ADC (e.g. comparable to LSB)

- could be matching our requirements already?

Practical Procedure:

• Measure QDC spectra with and without the Mylar attenuator varying base LED signals

• Get the mean of the QDC, and difference between means for base only vs. base+ differential

• NOTE: dT(x)/dx is proportional to T(x) (constant attenuation factor)
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Linearization with Mylar foil

• Step1: Pedestal subtraction and digitizer pulse shape

- Loop through iterations until there is a

5σ upwards deviation (pulse start)

- average before pulse start: pedestal

Amplitude

Pedestal

iteration

A
D

C
 v

a
lu

e

• Step2: Get difference between Amplitude/Integral

with and without Mylar foil at different LED voltages

- fit Gaussian and take the difference

- Uncertainties: Bootstrap method (fitting multiple subsets of samples)

Integral [ADC count] Integral [ADC count]

#
 e

v
e

n
ts

#
 e

v
e

n
ts

Uled=9.1V

With Mylar
Uled=9.1V

Without Mylar
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Linearization with Mylar foil
• Step 3: Plot relative difference of mean T(x) as function of mean T(x) 

and fit a polynomial (here: second order)

• Step 4: Solve integral equation for non-linearity using fitted function

𝑐 ∙ 𝑛𝑙 𝑥 =
1

𝑥
׬ Δ𝑇 𝑥 dx − Δ𝑇 𝑥

• Step 5: Calculate correction factor using result from Step 4

𝐶𝑜𝑟𝑟 𝑥 =
𝐵𝑥𝑟𝑒𝑓

𝐵𝑥𝑟𝑒𝑓+𝑛𝑙 𝑥
=

𝑥∙ Δ𝑇 𝑥

׬ Δ𝑇 𝑥 dx
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Photodetector comparison

SiPM 10

(Hamamatsu 10micron) SiPM 11

(Hamamatsu 10micron)

SiPM 12

(Hamamatsu 15micron)
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Photodetector comparison

SiPM 10

(Hamamatsu 10micron) SiPM 11

(Hamamatsu 10micron)

SiPM 12

(Hamamatsu 15micron)

Saturation?

Saturation?

Saturation?
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Photodetector comparison

SiPM 10

(Hamamatsu 10micron)

SiPM 11

(Hamamatsu 10micron)

SiPM 12

(Hamamatsu 15micron)
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Photodetector comparison

SiPM 10

(Hamamatsu 10micron)
SiPM 11

(Hamamatsu 10micron)

SiPM 12

(Hamamatsu 15micron)
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Summary LED

• Linearization seems to work ok with Mylar foil

• Fast and easy way to characterize the different SiPM models with the digitizer over several orders of

magnitude of signal

• Still some work to understand differences between SiPMs

TODO:

• Anchor curves to signal observed in ARES Testbeam

• Possibly improve attenuator setup (properly frame and fix the Mylar foil?)

• Re-design of double-LED board? Components no longer available…

• Measure all our SiPMs, vary overvoltage operating points etc.

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")



DESY. Page 17

Bonus: Some fun with Scintillator pictures & openCV

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

• We want to use the Scintillator screens to calibrate how much of the beam charge went into the straw

• Problem: Camera images taken from Scintillator screens are taken at an angle

→ perspective distorts beam spot

• Use openCV computer vision package to play with pictures:  https://docs.opencv.org/3.4/index.html

Original 

„Warped“ 

https://docs.opencv.org/3.4/index.html


DESY. Page 18

Bonus: Also works with kittens!

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Original kitten 
„Warped kitten“ 

• Next steps: try to interpolate between beamspots on first and second screen (without straws in between)

to find beam profile in front of Cherenkov straws


