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Thesis B. Vormwald

Non-linearities
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Want to know the Number of Compton electrons in each detector channel but we actually get a digital electronic signal
In an ideal world the relation between them is perfectly linear
— would need only one measurement of Number of electrons and corresponding signal output to calibrate

In real world measurement devices are not linear!

In addition to non-linearity there are also other effects (calibration differences between channels, time-
dependent variations) etc., will discuss those later
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Sources of Non-linearities
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Sources of non-linearities for our detector:

1) SiPM response
- at high photon densities, finite pixel number causes non-linearities
(pixels have to recharge O(10ns) after each breakdown avalanche)

- thermal noise, afterpulses, cross-talk

2) Readout non-linearities:
- unstable pedestal currents

- non-linearity in digitization step - depends on ADC implementation
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Correct these by measuring non-linearity!
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Non-linearities

= real transfer function
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* Detector response: measured signal (e.g. ADC) versus applied signal (e.g. incoming electrons per channel
— ideally: linear function L(x) = A, + B, X

— in reality: non-linear function T (x)

ref |

_ T(Xref)—T(0)
ef Xref

* Two anchor points: 4, = T(0) (Null measurement), B, _ (reference measurement at x..5)

* Two ways to express non-linearity:
- integrated (difference between ideal and real) INL(x) = T'(x) — L(x)

- differential (difference in slope between ideal and real) DNL(x) = % (T(x) — L(x)) = L& _

dx Xref

INL ;. Getting a high-light-yield stable short UV LED pulse is complicated! (exect O(40%) intensity variation)
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Differential non-linearity measurement

* Measuring DNL means measuring dZ—;x)
dT (x) _ T(x+Ax)—T(x)

* Approximate : v

Technical meaning:

x: variable base signal (e.g. a variable LED pulse)
Ax: constant differential signal (e.g. second, constant low-intensity LED pulse)

T (x + Ax): detector response with both signal at the same time
T (x): detector response with just base signal

dT(x) _ AT (x)
c

* Consequence of constant differential signal: -

« AT (x), where c is constant

dar (x;)
X

* Now measuring DNL(xX) means measuring(xi, ) o (x;, AT (x;))

* For small integrated non-linearities, assume: x; < T(x;)

* Extract information about non-linearity from (T'(x;), AT (x;))
— no more dependence on absolute signal x!
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L Inearisation

* Parametrize non-linearities in response: T(x) = (Bxyor nl(x)) - x

odT(x) =C- (B

Xref

* Express AT(x) =c + nl(x) + nl'(x) - x)

* Solve for the non-linearity: c - nl(x) = if (AT (x) — c - eref) dx

* Can show that: (AT(x)) =c - B

Xref
* And: ¢ nl(x) = - [ AT(x) dx — (AT (x))

eref _ x(AT(x))
eref+nl(x) ~ [ AT(x)dx

— Completely independent from absolute calibration scale!

* Linearisation correction factor: Corr(x) =

* Prescription:
- take measurements of (T'(x;), AT (x;))
- fit a polynomial function AT (x)
- calculate the correction factor using the integral and the average

Thesis B. Vormwald

signal

# electrons
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After this procedure, we know our detector response is linear, but we know the slope only to factor c!
— Can correct using a complementary measurement (e.g. TB or in-situ calibration)

DESY.
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How to practically do the linearization?

* There is already a LED board from the Polarimetry setup (based on CALICE) that can produce the base and differential signals

* Requirement: - choose Ax such that it is small compared to the calibration range of the photodetector and to the
full-scale range of the readout ADC (e.g. comparable to LSB)
- could be matching our requirements already?

Practical Procedure:

* Measure QDC spectra with and without the differential signal for varying base LED signals
* Get the mean of the QDC, and difference between means for base only vs. base+ differential

* Fit polynomial function and proceed with linearization
Simulated QDC spectra Difference between base+differential and base pulse

= pedestal

ot
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= base pulse
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Linearization with Mylar foil?

* Since LED boards did not work, fashioned a O(10%) attenuator from Mylar foil

* Requirement: - choose Ax such that it is small compared to the calibration range of the photodetector and to the
full-scale range of the readout ADC (e.g. comparable to LSB)
- could be matching our requirements already?

Practical Procedure:
* Measure QDC spectra with and without the Mylar attenuator varying base LED signals

* Get the mean of the QDC, and difference between means for base only vs. base+ differential

* NOTE: dT(x)/dx is proportional to T(x) (constant attenuation factor) 7
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Linearization with Mylar foil

ADC value

* Stepl: Pedestal subtraction and digitizer pulse shape
Amplitude

- Loop through iterations until there is a
50 upwards deviation (pulse start)
- average before pulse start: pedestal

Pedestal

[
»

* Step2: Get difference between Amplitude/Integral iteration
with and without Mylar foil at different LED voltages
- fit Gaussian and take the difference
- Uncertainties: Bootstrap method (fitting multiple subsets of samples)
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Linearization with Mylar foil

* Step 3: Plot relative difference of mean T(x) as function of mean T(x)
and fit a polynomial (here: second order)

* Step 4. Solve integral equation for non-linearity using fitted function
c-ni(x) = - [ AT(x) dx — (AT (x))

* Step 5: Calculate correction factor using result from Step 4
eref _ x{(AT(x))
eref+nl(x) ~ [ AT(x)dx

Corr(x) =
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Photodetector comparison

rel. difference Mylar infout dT(x)/T(x)
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Photodetector comparison
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Photodetector comparison
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Photodetector comparison
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Summary LED

* Linearization seems to work ok with Mylar foll

« Fast and easy way to characterize the different SIPM models with the digitizer over several orders of
magnitude of signal

 Still some work to understand differences between SiPMs

TODO:

« Anchor curves to signal observed in ARES Testbeam

« Possibly improve attenuator setup (properly frame and fix the Mylar foil?)
* Re-design of double-LED board? Components no longer available...

 Measure all our SiPMs, vary overvoltage operating points etc.
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Bonus: Some fun with Scintillator pictures & openCV

* We want to use the Scintillator screens to calibrate how much of the beam charge went into the straw

* Problem: Camera images taken from Scintillator screens are taken at an angle
— perspective distorts beam spot

* Use openCV computer vision package to play with pictures: https://docs.opencv.org/3.4/index.html

Original
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Bonus: Also works with kittens!

Original kitten

,Warped kitten*

* Next steps: try to interpolate between beamspots on first and second screen (without straws in between)
to find beam profile in front of Cherenkov straws
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