Tracking Performance

Leo Rozanov 03/08/2023

Muon Gun Data Selection

Data from

/collab/project/snowmass21/data/fmeloni/LegacyProductions/before29Jul23/DataMuC_Mu

Coll_v1/muonGun/reco/ (note: no BIB)

I matched the reconstructed Muon tracks to truth Muons using only dR matching with dR <

0.1

- No requirement on muon pT, nhits, etc.
- There are 924 matched tracks in total

Basic Distributions for Reco

- Quick overview of some basic distributions
- Muons have p_T up to 1000 GeV, decreasing with higher p_T
- ϕ is relatively uniform for all muons
- η is centred around 0, and the counts decrease with higher η (both + and -)
- d_0 is heavily centred around 0, as expected

Single Event Resolutions

• We define resolution for matched muons as:

 p_T res = truth p_T - reco p_T / truth p_T

• For the impact parameters, the truth impact parameters are 0 (we define them to

be created at the origin), so instead of using a formula similar to the above, we can

just use the track impact parameters' displacement from the origin

- The idea is to make a two
 histogram of (for example) p_T
 resolution versus track p_T and
 then use the y-values in each x
 bin to compute the resolution
- We do this by taking the σ
 (std.) of the gaussian within
 each x bin

1D Slices for p_T **resolution**

- We take 1D slices by p_T bins to check if the data is gaussian and if it matches expectations
- For example, for a p_T range 1-100 GeV, we expect σ(p_T)/ p_T to be ~0.003, increasing with higher p_T
- (Credit: Karri DiPetrillo)

0.025 First term σ(рт) / рт MS term 0.02 Total exp Sagitta MS Total Total p⊤ (GeV) Exp Obs Term Term σ(pτ)/pτ 0.015 0.00002 0.005 0.004 0.004 0.01 0.003 10 0.00019 0.003 0.003 100 0.00187 0.003 0.004 0.003 0.005 1000 0.01874 0.003 0.019 200 600 1000 p⊤ (GeV)

Momentum Resolution

Expected results agree with measured resolution @3 TeV Need to test for $p_T > 200$ GeV to validate first term

9

1D Slices for p_T resolution

Slice 0: 0 to 100 GeV Sigma from Fit: 0.00434 GeV

Slice 1: 100 to 200 GeV Sigma from Fit: 0.00503 GeV

Slice 2: 200 to 400 GeV Sigma from Fit: 0.00690 GeV

Slice 3: 400 to 600 GeV Sigma from Fit: 0.00888 GeV

1D Slices for d_0 resolution

Impact parameter resolution

Agrees fairly well with observed resolution @3 TeV

- Let's do the same for d_0
- For example, for a p_T range 1-100
 GeV, we expect σ(d₀) to be ~5μm,
 decreasing with higher p_T
- (Credit: Karri DiPetrillo)

	σ(d₀) (μm)			
р _т (GeV)	First term	MS term	Total exp	Total Obs
1	3.9	37	37	20
10	3.9	3.6	5.4	6
100	3.9	0.36	4.0	3
1000	3.9	0.036	3.9	_

Karri Folan DiPetrillo

KDP Lab | University of Chicago | Muon Colliders

11

1D Slices for d_0 resolution

Slice 0: 0 to 100 GeV Sigma from Fit: 3.05µm

Slice 1: 100 to 200 GeV Sigma from Fit: 2.15µm

Slice 2: 200 to 400 GeV Sigma from Fit: 1.91µm

Slice 3: 400 to 600 GeV Sigma from Fit: 1.24µm

- $\sigma(p_T)$ against matched track p_T
- No selection on d_0
- No selection on θ

- $\sigma(p_T)$ against matched track p_T
- Using pT_d0_cutoffs = [0.8, 0.7, 0.6, 0.5]
- 70° <= θ < 110°

- $\sigma(p_T)$ against matched track θ
- No selection on d_0
- No selection on θ

- $\sigma(d_0)$ against matched track p_T
- No selection on d_0
- No selection on θ

- $\sigma(d_0)$ against matched track p_T
- Using pT_d0_cutoffs = [0.8, 0.7, 0.6, 0.5]
- 70° <= θ < 110°

- $\sigma(d_0)$ against matched track heta
- No selection on d_0
- No selection on θ

Tracking Performance

- This is what I want to reproduce from <u>'Towards a Muon Collider</u>' pg. 58
- Here it uses 1.5 TeV geometry, with BIB
- It's worth noting the 1.5 TeV momenta are apparently produced discretely, at 1 GeV, 10 GeV, and 100 GeV, whereas the momenta I'm using is continuous

- $\sigma(d_0)$ against Matched track θ
- Using pT_d0_cutoffs = [0.8, 0.7, 0.6, 0.5]
- Using pT_ranges = [1, 5, 50, 200, np.inf]
- No selection in θ
- # of points in pT range 1 5 = 6
- # of points in pT range 5 50 = 61
- # of points in pT range 50 200 = 226
- # of points in pT range 200 inf = 615

- $\sigma(d_0)$ against Matched track θ
- Using pT_d0_cutoffs = [0.8, 0.7, 0.6, 0.5]
- Using pT_ranges = [1, 5, 50, 200, np.inf]
- $70^{\circ} \le \theta < 110^{\circ}$
- # of points in pT range 1 5 = 4
- # of points in pT range 5 50 = 9
- # of points in pT range 50 200 = 36
- # of points in pT range 200 inf = 191

Conclusion

- I performed an analysis on tracking performance in muon gun samples without BIB
- Trends for p_T and d_0 resolution look as expected with available statistics
- However, I don't have enough statistics for low p_T range to see how the d_0 resolution is affected by p_T across different θ
- Next steps
 - Understand what's happening in the tails
 - Repeat analysis after overlaying BIB and/or with new data