Expected Tracking Performance from First Principles

Karri Folan DiPetrillo University of Chicago 10 TeV µC Meeting 3 August 2023

Intro

- UChicago group studying tracking performance
 - Isaac: occupancy with timing & pointing requirements
 - Noah: Tracking efficiency & fake rates
 - Leo: p_T and impact parameter resolution
- p_T and impact parameter resolution results surprisingly good
 - w/o BIB so far
- Goal of these slides: cross-check expected & observed performance
 - Derive expected resolutions from first principles (<u>1705.10150</u>)
 - Compare to 3 TeV Towards a muon collider paper

3 TeV performance

We're using the same detector geometry (including B-field) so we should observe the same performance

Will focus on $\theta = 90^{\circ}$ for simplicity

σ(d₀) ~ 3-20 μm

 $\sigma(\Delta p_T/p_T) \sim 0.3-0.5\%$

Karri Folan DiPetrillo

	Vertex Detector	Inner Tracker	Outer Tracker
cell size	25x25 µm²	50 µm x 1 mm	50 µm x 10 mm
thickness	50 µm	100 µm	100 µm
σ _t	30 ps	60 ps	60 ps

Karri Folan DiPetrillo

Radius of Curvature & Sagitta

Particles follow a helical trajectory in solenoidal field First sanity check: getting a feel for radius of curvature and sagitta

Multiple scattering

Incident particles scatter in detector material Scattering adds a random component to particle's path Angular dispersion modeled by Gaussian

$$\theta_0 = \frac{13.4 \text{MeV}/c}{\beta p} q \sqrt{\frac{d}{X_0}}.$$

 $d/X_0 =$ #radiation lengths

Material Budget

Momentum Resolution

Depends on two factors

Error on sagitta measurement

$$\left(\frac{\sigma_{p_{\rm T}}}{p_{\rm T}}\right)_{\rm sagitta} = \frac{p_{\rm T}}{0.3} \frac{\sigma_{\rm point}}{BL^2} \sqrt{\frac{720}{N+4}}$$

- Tracker length, L = 1.5 m
- B-field = 3.5 T
- Hit resolution σ_{point} (m) ~ 8 μ m
 - single hit resolution = pitch/ $\sqrt{12}$
 - with multiple hits per cluster
 ~0.8 pitch/√12
- Number of measurements, N
 - Doublets as separate layers = 14
 - Doublets as single layers = 10

Multiple Scattering

$$\left(\frac{\sigma_{p_{\rm T}}}{p_{\rm T}}\right)_{\rm MS} = \frac{0.0136}{0.3 \ \beta \ BL} \sqrt{\frac{x/\sin\theta}{X_0}} \sqrt{C_N}$$

- Velocity, $\beta = 1$
- Number of radiation lengths
 - $(x/\sin\theta)/X_0 = 0.1$ for particle with $p_T = \infty$ at $\eta=0$
- C_N = combinatoric factor
 - = 2.5 for N = 3
 - = 1.3 for infinite
 - Lets call it 1.5

Momentum Resolution

Expected results agree with measured resolution @3 TeV Need to test for $p_T > 200$ GeV to validate first term

Impact parameter resolution

Here just focus on the pixel detector

Impact parameter resolution

Agrees fairly well with observed resolution @3 TeV

Conclusions

- Cross-checked expected tracking performance with measured performance @3 TeV
- First principles calculations in good agreement with observation for 1-100 GeV muons
- Need to test $p_T > 100$ GeV up to 1 TeV