Higgs Searches at ATLAS (Biased Towards $H o \gamma \gamma$)

Kerstin Tackmann

DESY

LHC Physics Discussion - May 23, 2011 - Hamburg

Higgs Boson Production at the LHC

Dominant process: Gluon fusion

Vector boson fusion (VBF) Smaller xsection, but distinct topology with two forward jets

Theoretical uncertainties

- Gluon fusion known at NNLO $\sigma_{
 m theo} \sim \mathcal{O}(15\%)$
- VBF known almost at NNLO $\sigma_{
 m theo} \sim \mathcal{O}(5\%)$

SM Higgs Decay Channels

Small
$$m_H~(m_H$$

 Dominant decay mode at small m_H, but needs distinct features at production/decay to beat down backgrounds

Typically in VBF, enhanced in MSSM

$$H o \gamma \gamma$$

Small BF, but good signal yield and distinct signal

Intermediate
$$m_H~(m_H>\approx 130~{
m GeV})$$
 $H o WW o \ell
u \ell
u, H o ZZ o 4\ell$

Small leptonic BFs take their toll

Large $m_H \, (m_H > pprox 200 \, {
m GeV}) \ H o WW o \ell
u qar q, H o ZZ o \ell\ell
u
u, \ell\ell qar q$

$H o \gamma \gamma$: Analysis

- ullet Comparably large signal yield despite tiny branching fraction on top of \sim exponentially falling background
- Main background: SM diphotons:

• Hadronic backgrounds: jet with leading π^0 misidentified as γ , e.g.

- ullet 2 γ candidates with $p_T > 40\,{
 m GeV}$ and $p_T > 25\,{
 m GeV}$
 - ★ Identified using shower shape cuts (in particular using lateral shower shapes in first sampling of LAr calorimeter)
 - \star Calo isolation $E_T^{
 m cone40} < 3\,{
 m GeV}~(\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2} = 0.4)$

$H \rightarrow \gamma \gamma$: Resolution

- Need good resolution for narrow signal peak
- Significant contribution from converted photons
 - $\star \sim 60\%$ signal with at least one converted photon due to large material budget of the Inner Detector
 - Worse resolution due to electron bremsstrahlung
- Photon direction determined from first sampling of calorimeter, conversion vertex (if applicable) and primary vertex
 - \star Primary vertex identified by largest $\sum p_T^2$
 - ★ Average number of pile-up vertices is 2.3 (in 2010)
- $m_{\gamma\gamma}$ resolution estimated to be 1.9 GeV

Digression: Improving the Calorimeter Resolution

- Calorimeter calibration based on simulation
 - ⋆ Thoroughly tested in test beam
- ullet Additional energy scale corrections derived from $Z
 ightarrow e^+ e^-$
 - * Will improve further with higher statistics $Z \rightarrow e^+e^-$ samples
- Goodness of calibration dependend on understanding of upstream material
- Major effort to verify and continously improve the material description in the simulation e.g. studying hadronic interactions and photon conversions in ID material

$H \rightarrow \gamma \gamma$: Backgrounds

- Reasonable agreement between data and background estimates from simulation
 - Simulation predictions from DiPhox and ResBos

- Data using control regions with loosened identification and isolation requirements for background cross checks
- Drell-Yan background estimated from extracted the electron-fake probability with help of Z → e⁺e⁻

$H \rightarrow \gamma \gamma$: Systematics

	Source	Uncertainty
	Luminosity	±3.4%
Theory	Cross-section (scales)	$^{+20}_{-15}\%$
Efficiency	Photon identification	±11%
	Photon isolation	±10%
	Trigger	$^{+1.1}_{-3.7}\%$
Resolution	Calibration	
	$e \rightarrow \gamma$ extrapolation	±13%
	Pile-up	

 Systematics treated in limit setting as nuisance parameters using penalty Pdfs

$H \rightarrow \gamma \gamma$: Results

Observed Power Constrained limit Observed limit Doserved limit ATLAS Preliminary Ldt = 38 pb 1 Ldt = 38 pb 1 ATLAS Preliminary Ldt = 38 pb 1 ATLAS Preliminary Ldt = 38 pb 1 ATLAS Preliminary Ldt = 38 pb 1

CL_s

- Limits already competitive with Tevatron results
- ullet Expected limits $\sim 20~{
 m SM}$
- ullet PCL $(CL_{s+b}$ with power constraint) less conservative than CL_s

$H \rightarrow \gamma \gamma$: Future Improvements

Possible improvements to the analysis studied in detail on simulation

- Need better identification of primary vertex with increasing pile-up
 - * Add calorimeter pointing to primary vertex selection
- ullet Categorize γ s according to being (un)converted and according to their η
 - \star Separates classes of events according to their $m_{\gamma\gamma}$ resolution
- Use additional discriminating variables: $\cos \theta^*$ (Higgs decay angle) and $P_{T,\gamma\gamma}$
- Classify events according to their jet content
 - Different categories have different mix of production modes
 - ⋆ Different categories rather different in S/B

$H \to WW \to \ell \nu \ell \nu$: Analysis

- Essentially no mass resolution
- Comparably large yield with rather low backgrounds
- Events separated according to jet multiplicity
- Common preselection for the different jet channels
 - $\star~2\ell$ with $p_T>15/20\,{
 m GeV},$ isolated and identified
 - e shower shapes and tracking
 - μ muon spectrometer
 - $\star \ m_{\ell\ell} > 15 \, {
 m GeV}, \ |m_{ee,\mu\mu} m_Z| > 10 \, {
 m GeV}$
 - $\star~E_T^{
 m miss} > 30\,{
 m GeV}$
 - $\star \ \Delta\phi_{\ell\ell} < 1.3(1.5)$ for $m_{\ell\ell} < (>)170\,{
 m GeV}$

- Dominant backgrounds estimated in control regions and extrapolated into signal region
 - \star **WW** $\ell\ell$ sidebands
 - ★ top reverse b-veto
 - \star W+jets loosen id on 2nd ℓ
 - \star Z+jets $m_{\ell\ell}$ - $E_T^{
 m miss}$ plane

A $WW ightarrow e u \mu u$ Candidate

$H \to WW \to \ell\nu\ell\nu$: Exclusive Jet Channels

Transverse mass

$$m_T = \sqrt{(E_T^{\ell\ell} + E_T^{
m miss})^2 + (ec p_T^{\ell\ell} + ec p_T^{
m miss})^2}$$
 0-jet Dominant bkgd: $m{W}m{W}$

Data	3
BG	1.8±0.1
Higgs	1.26±0.02

1-jet Dominant bkgd: top (WW, Z+jets)

Data	1
BG	1.2±0.1
Higgs	0.6±0.01

2-jet Dominant bkgd: top, WW

Data	0
BG	0.02±0.01
Higgs	0.06±0.01

(Numbers for analysis point at $m_H = 170 \, \mathrm{GeV}$)

$H o WW o \ell \nu \ell \nu$: Systematics

Source of Uncertainty	Treatment in analysis
Jet Energy Resolution (JER)	~ 14%, see Ref. [56]
Jet Energy Scale (JES)	$< 10\%$ for $p_T > 15$ GeV and $ \eta < 4.5$, see Ref. [53].
Electron Selection Efficiency	$6-16\%$ as a function of $p_{\rm T}$
Electron Energy Scale	1% for $ \eta < 1.4$, 3% for $1.4 < \eta < 2.5$
Electron Energy Resolution	Sampling term 20%, a small constant term has a large variation with η
Muon Selection Efficiency	1.2% for $p_{\rm T} < 20~{\rm GeV}$ and 0.4% for $p_{\rm T} > 20~{\rm GeV}$
Muon Momentum Scale	η dependent scale offset in p_T , up to ~ 3.5%
Muon Momentum Resolution	$p_{\rm T}$ and η dependent resolution smearing functions, $\leq 10\%$
b-tagging Efficiency	$p_{\rm T}$ dependent scale factor uncertainties, 10-12%, see Ref. [54]
b-tagging Mis-tag Rate	up to 26%
Missing Transverse Energy	Add/subtract object uncertainties into the $E_{\rm T}^{\rm miss}$, up to 20%
Luminosity	11%

$H \to WW \to \ell\nu\ell\nu$: Results

Best sensitivity at $m_H=170\,\mathrm{GeV}$: exclusion of 2.1 imes SM

Exclusion of 1.2 imes SM at $m_H=160\,\mathrm{GeV}$

$H o ZZ o 4\ell$

- Very clean channel with good mass resolution
- Low event yield to due leptonic BF
- Selection of two opposite-sign isolated dileptons with requirements on dilepton masses, $\Delta R(\ell_i, \ell_j)$ and small impact parameter significance

After cuts on dileptons

- No events left after full selection
- Background dominated by SM ZZ

Data	0
BG	0.4
Higgs	0.10±0.02

- ZZ and ZQQ cross checked on data
- ullet Exclusion limit $\sim 25 imes$ SM

H o au au

- MSSM h/H/A produced in gluon fusion and in association with $b\bar{b}$
- Reconstructed in $au_{
 m had}\ell
 u
 u$ (BF $\sim 46\%$) from $au_{
 m had},\ell$, $E_T^{
 m miss}$ and $m_T^{ au}$
- W/Z+jets and QCD backgrounds cross checked on data using control regions

ullet For $m_A=120\,{
m GeV}$ and aneta=40

Data	206
BG	207 ± 6
Higgs	52 ± 1

- $M_{\tau\tau}({
 m vis})$ shape used in limit determination
- Limits better than Tevatron for much of $\tan \beta m_A$ plane ($m_h^{\rm max}$ scenario)

Summary

- Higgs searches performed with 2010 data set in many channels, more than have been shown here
 - $\star~H o WW o \ell
 u qar{q} ext{ for } m_H > 200 ext{ GeV}$
 - $\star~H o ZZ o \ell\ell qar q, \ell\ell
 u
 u$ for $m_H > 200\,{
 m GeV}$
 - \star Light CP-odd Higgs decaying into $\mu\mu$
 - \star Study for charged Higgs boson search in $t\bar{t}$ events with leptons
 - ⋆ Data-driven bkgd estimation for charged Higgs decays into hadronically decaying τ
- Already competitive (with 2010 data) with Tevatron results in low mass searches ($H \to \gamma \gamma$, MSSM $H \to \tau \tau$)

18 / 18

 Searches will continue on the much larger 2011 data set with new challenges posed by much larger pile-up

Backup

$\overline{H ightarrow\gamma\gamma}$: Backgrounds With Higher Statistics

