Summary of Brookhaven Workshop "Higgs Cross Sections for the LHC"

Frank Tackmann

Massachusetts Institute of Technology

May 23, 2011

LHC Higgs Cross Section Working Group

Joint effort of ATLAS + CMS + LHCb + Theory

- 4 overall contacts (ATLAS + CMS + 2×Theory)
- 10 subgroups on production modes and common issues
- 6 "orthogonal" subgroups on decay channels (since 2011)
- ex-officio contact people from experiments (Higgs / MC conveners)

Goals

- Cross-section predictions + related theory issues / uncertainties
- Provide inputs / prescriptions / recommendations for analyses and the LHC Higgs Combination Group

2010: CERN Yellow Report with focus on total cross sections

Updates at

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

Agenda for 2011

Second Yellow CERN Report (YR2)

[S. Dittmaier]

"Handbook of Higgs XS: 2. Differential Distributions"

- General: recipes to assess theory uncertainties (THU) and parameter uncertainties (PU) for distributions
- results on production channels ggF, VBF, WH/ZH, ttH: distributions with THU+PU
- BRs: THU+PU
- MSSM: general recipes / results for specific scenario(s) for cross section and distributions with THU+PU
- PO: heavy Higgs mass / width, signal-background interference
- NLO-MC: tools and error estimates for $\sigma \times \varepsilon$
- specific topics: jet veto, more ?

Main goals of the BNL workshop

- Discussion of current issues preparation for summer conferences
- Communication between LHC and Tevatron Higgs groups

Some of the theory-related issues that were discussed

- NLO-MC: towards systematic uncertainties / comparison of different tools
- PDF: updates, uncertainties, plans
- Parametric uncertainties in branching ratios
- Cuts and distributions: QCD (and EW) corrections, jet vetoes

Pilot Project for Systematic Uncertainties in NLO MCs

Step I: Fixed order

[F. Krauss]

→ MC tools: Powheg-Box, Sherpa, Herwig++

(if volunteers are found)

- → FO tools: HNNLO, HqT (no resum?), MCFM
- → Settings:
 - → Two Higgs masses: 130 & 160 GeV
 - → Jets: Anti-kt with pTmin = 30 GeV, R = 0.4, 0.5, 0.6
 - → MSTW2008NNLO for HNNLO, HqT (NNPDF NNLO?)
 - → PDF4LHC recommendation for NLO (envelope of MSTW, CT10, NNPDF)
 - Typical scale variation (factor 2), document default choices & cross-check where possible
 - → 3 error bands: PDFs and scales alone and both combined

→Observables:

- $\boldsymbol{\rightarrow} \boldsymbol{\sigma}_{tot}, \boldsymbol{y}^{H}, \boldsymbol{p}_{T}^{H}, \boldsymbol{H}_{T}, \boldsymbol{p}_{T}^{jet}, \boldsymbol{\eta}^{jet}, \Delta \boldsymbol{y}_{H, jet}, \boldsymbol{p}_{T}^{leptons}, \boldsymbol{\eta}^{leptons}, \Delta \boldsymbol{R}_{leptons}, \boldsymbol{E}_{T}^{miss}, \Delta \boldsymbol{\Phi}_{(lepton planes)}$
- → F. Siegert has produced a Rivet analysis for the MC codes to feed in.
- → Essentially a debugging of the matrix-element implementations

Pilot Project for Systematic Uncertainties in NLO MCs

Step II: After showering

[F. Krauss]

→ MC tools: MC@NLO, Powheg-Box, Sherpa, HW++

(if volunteers are found)

- → FO tools: HqT with resummation
- → Settings: as in fixed order, but: shower settings?
 - → for Powheg-Box (Pythia, Herwig, or both?),
 - → MC@NLO (F. Stoeckli has volunteered to run both HW and HW+)
 - → vary scale choices in shower (possible in Sherpa)
 - → offers possibility to check influence of differing PDFs/alphaS in ME/PS
 - → tricky one: Pythia authors unhappy with UE switched off ...
 - → another tricky one: impact of Pythia tunes.
- → Here it becomes a bit harder to see how we can be systematic about systematics.
- → Add a few observables: jet veto probability, also: Njets, jet correlations, ...
 - (Rivet analysis exists, so should not be a problem for the MCs add beam-thrust? Any help from the proponents in implementation?)
- → This is where things get interesting

Pilot Project for Systematic Uncertainties in NLO MCs

Step III: After hadronisation/UE

[F. Krauss]

- → Same MC tools.
- → Basic idea: quantify impact of non-perturbative stuff.
- → Can run Sherpa with two hadronisations, and switch on and off its UE (Pythia not so happy about it);
- → Can run Powheg-box with different Pythia tunes or with Herwig +- Jimmy.

- → I expect that this doesn't change picture drastically, but it is better to check.
- → By far the least systematic and (in my mind) still the least understood

Recent Progress and Plans from PDF Fits

PROGRESSS SINCE LAST WG MEETING

[S. Forte]

- NNPDF2.0 → NNPDF2.1
 - INCLUSION OF HQ MASSES (FONLL-A)
 - $-F_2^c$ DATA INCLUDED
- CTEQ6.6 \rightarrow CT10
 - IMPROVED STATISTICS (SIMILAR TO DYNAMICAL TOLERANCE)
 - MORE FLEXIBLE d_v , GLUON, STRANGENESS (BUT STILL $s=\bar{s}$)
 - COMBINED HERA DATA, RUN II JETS, W ASYM, Z RAPIDITY DISTN.

ANNOUNCED AND/OR PRESENTED IN PRELIMINARY FORM (BUT NOT YET ON LHAPDF)

- CTEQ: NNLO
- NNPDF: NNLO (& LO) (2.1); INCLUSION OF LHC W ASYM DATA (2.2)
- HERAPDF: NNLO (1.0); INCLUSION OF HERAII AND HERA JET DATA (1.5)
- ABKM: INCLUSION OF JET DATA

Current NNLO PDFs

NNLO STATUS GLUON-GLUON PARTON LUMINOSITY

[S. Forte]

(G. Watt, 2011)

- NLO VS NNLO MSTW LUMINOSITIES QUITE CLOSE ... BUT PARTLY DUE TO LOWER NNLO α_s (0.117 vs 0.120)
- DIFFERENCES AS DATASED VARIED MUCH LARGER ... BUT IN SOME CASE ALSO α_s QUITE DIFFERENT (ABKM: 0.113)

√ŝ/s

Preliminary NNPDF at NNLO

NNLO PROGRESS

[S. Forte]

- CTEQ NNLO IN PREPARATION
- NNPDF NNLO PRESENTED IN PRELIM. FORM (DIS ONLY AT NNLO, FULL NNLO IN PREPARATION)
 - GLUON SIMILAR TO MSTW, BUT NO SMALL x INSTABILITY

Preliminary NNPDF at NNLO

NNLO PROGRESS

[S. Forte]

- CTEQ NNLO IN PREPARATION
- NNPDF NNLO PRESENTED IN PRELIM. FORM (DIS ONLY AT NNLO, FULL NNLO IN PREPARATION)
 - GLUON SIMILAR TO MSTW, BUT NO SMALL x INSTABILITY
 - LUMINOSITY & HIGGS XSECT QUITE CLOSE TO MSTW . . . PROVIDED SAME α_s USED

GLUON LUMI & HIGGS XSECT: NNPDF VS MSTW GLUON LUMI HIGGS XSECT.

The Value of α_s

THE VALUE OF α_s

[S. Forte]

- DEDICATED MUNICH MEETING (FEB 2011):
 S. BETHKE PROPOSES TWO UPDATED VALUES:
 - (1) $\alpha_s = 0.1174 \pm 0.0011$
 - (2) $\alpha_s = 0.1187 \pm 0.0006$
 - BOTH INCLUDE NEW VALUE FROM τ DECAYS $\alpha_s=0.1213\pm0.0014$ (WAS $\alpha_s=0.1197\pm0.0016$)
 - VALUE (1) ALSO INCLUDES NEW SCET VALUE FROM e^+e^- THRUST (Abbate et al., 2010) $\alpha_s=0.1135\pm0.0010$, BUT ALL UNCERTAINTIES RESCALED BY FACTOR 2
 - value (2) excludes it
- AVERAGING THE TWO MOST RELIABLE VALUES (GLOBAL EW FIT & τ , BOTH N³LO, NO DEP. ON HADRON STRUCTURE) GIVES $\alpha_s=0.1209\pm0.0013$
- ightarrow I would consider SCET thrust fits more reliable than au decays ...

Higgs Branching Ratios

Parametric Uncertainty Estimation Baselines

[D. Rebuzzi]

Parametric uncertainties estimated by changing separately, while leaving all others
 at their central values, each of the following relevant parameters: α_S, m_b, m_c, m_t

Parameter	Central Value	Uncertainty		
α_{S}	0.119	± 0.002 (90% CL)		
m_b [GeV]	4.49(*)	$\pm 0.03 (2\sigma)(**)$		
m_c [GeV]	1.41(*)	$\pm 0.03 (2\sigma)(**)$		
m_t [GeV]	172.5	± 2.5		

(*) one-loop pole mass, from our TWiki

(**) errors from Ref. arXiv:0907.2110

Comments:

- One-loop pole masses (differently from MSbar masses) accidentally show negligible dependence on α_S , so that their variation can be independent from α_S (***)
- Uncertainty on b- and c-masses taken from the indicated reference (PDG uncertainties are way larger: m_b^{MSbar} = 4.19 + 0.18 - 0.06 GeV, m_c^{MSbar} = 1.27 + 0.07 - 0.09 GeV)
- Dependency of the EW NLO corrections to H→ γγ and H→ gg on m_t accounted for automatically in HDECAY - all the other parametric uncertainties of the EW corrections are negligible

(***) Similar procedure followed in A. Djouadi, M. Spira, P.M. Zerwas hep-ph/9511344

Higgs Branching Ratios

Comparison with arXiv:1012.0530v3

[D. Rebuzzi]

Parameter choice:

Parameter	LHC BR Group	arXiv:1012.0530v3
$\alpha_S(M_Z)$	$0.119 \pm 0.002 (90\% CL)$	0.1171 ± 0.0014 (68% CL)
m_b [GeV]	$4.49 \pm 0.03 (2\sigma)$ (*)	$4.419^{+0.18}_{-0.06}$ (**)
m_c [GeV]	$1.41 \pm 0.03 (2\sigma)$ (*)	1.27+0.07 (**)
m_t [GeV]	172.5 ± 2.5	-

(*) one-loop pole mass

(**) MSbar PDG mass
and relative uncertainty
(os = 0.1171 at NNLO in
these uncertainties

calculations)

Results in percentage (selection):

		LHC BR Group					arXiv:1012.0530v3					
Channel	M_H	BR	Δm_c	Δm_b	$\Delta lpha_s$	Δm_t	ΔBR	BR	Δm_c	Δm_b	$\Delta \alpha_s$	ΔBR
$H o bar{b}$	120	64.8	+0.2 -0.2	+0.6 -0.6	+0.9 -1.0	+0.02 -0.02	+1.1 -1.2	65.1	+0.7 -0.6	+3.4 -1.2	+0.7 -0.8	+3.6 -1.6
	135	40.3	$^{+0.1}_{-0.1}$	$^{+1.0}_{-1.0}$	$^{+1.6}_{-1.7}$	$^{+0.04}_{-0.04}$	+1.9 -1.9	40.2	$^{+0.4}_{-0.4}$	$^{+6.0}_{-2.1}$	$^{+1.3}_{-1.3}$	+6.2 -2.5
	150	15.6	$^{+0.0}_{-0.1}$	$^{+1.3}_{-1.4}$	$^{+2.2}_{-2.3}$	$-0.01 \\ -0.05$	+2.6 -2.7	15.5	$^{+0.2}_{-0.1}$	+8.7 -3.0	$^{+1.9}_{-1.9}$	+8.9 -3.6
H → WW (***)	120	14.2	+0.2 -0.2	+1.0 -1.0	+1.6 -1.5	-0.04 -0.02	+1.9 -1.8	14.7	+0.7 -0.6	+2.3 -6.3	+1.4 -1.4	+2.8 -6.5
	135	40.2	$^{+0.1}_{-0.1}$	$^{+0.6}_{-0.6}$	+0.9 -0.9	-0.02 -0.01	$^{+1.1}_{-1.1}$	41.1	$^{+0.4}_{-0.4}$	$^{+1.4}_{-4.0}$	+0.9 -0.9	$^{+1.7}_{-4.1}$
	150	69.8	$^{+0.1}_{-0.1}$	+0.2 -0.3	$^{+0.3}_{-0.3}$	$-0.01 \\ -0.00$	+0.4 -0.4	70.3	$^{+0.2}_{-0.1}$	$^{+0.5}_{-1.6}$	+0.3 -0.3	$^{+0.7}_{-1.6}$

(***) Uncertainties (in percentage) on H→TT and H→ZZ,yy SAME AS H→WW

ABR discrepancy (mostly) due to different quark masses and uncertainties

Higgs Branching Ratios

Comparison with arXiv:1012.0530v3 (cont'd)

Other channel comparisons:

[D. Rebuzzi]

Δ BR(H \rightarrow cc) discrepancy (mostly) due to m_c

BR(H→gg): similar uncertainties but 0(12-13%) discrepancy for central values, to be understood

		LHC BR	Group	arXiv:1012.0530v			
Channel	M_H [GeV]	BR [%]	ΔBR [%]	BR [%]	ΔBR [%]		
	120	3.00	+9.5 -9.6	3.13	+20.7 -22.8		
$H \to c\bar{c}$	135	1.87	+10.0 -10.1	1.93	+20.5 -23.0		
	150	0.72	+10.6 -10.6	0.74	+20.6 -23.2		
H o gg	120	8.81	+5.9 -5.6	7.69	+4.9 -7.8		
	135	7.04	+5.1 -4.9	6.10	+3.9 -5.5		
	150	3.43	+4.3 -4.2	2.94	+3.0 -3.4		

Cuts and Distributions

Distributions require additional jets, mostly known at fixed NLO

- $ullet \ gg
 ightarrow H + 1j$ (HNNLO, FEHiP, MCFM), gg
 ightarrow H + 2j (MCFM)
- ullet qq
 ightarrow Hqq + 1j [Figy, Hankele, Zeppenfeld]
- ullet New: bar b o H + 1j at NLO [Harlander, Ozeren, Wiesemann]

However, additional scales introduce $\ln^2(p_T^{
m jet}/m_H)$ terms

- ullet Ideally should be resummed to all orders in $lpha_s$
- NLO MCs sum leading logs, but distributions are only at LO

⇒ Perturbative uncertainties in distributions / jet multiplicities / with jet veto are hard to quantify. Many cases where this is coming up

- $ullet gg
 ightarrow H(
 ightarrow WW) + 0, 1j ext{ (most important at the moment)}$
- $ullet gg
 ightarrow H(
 ightarrow \gamma\gamma) + 1j$
- ullet qq
 ightarrow H + 2j (vector-boson fusion)
- ullet $H
 ightarrow bar{b}$
- lacksquare H
 ightarrow au au

Perturbative Uncertainties From Jet Veto

Extensive discussions for $gg \rightarrow H + 0j$

- Naive scale variation at NNLO completely underestimates uncertainty
- Converged to BNL proposal: To estimate uncertainties using available fixed-order results take differences of inclusive jet cross sections (well motivated by known pert. structure and resummation results)

$$\sigma_0 = \sigma_{ ext{total}} - \sigma_{\geq 1} \qquad \Rightarrow \qquad \Delta_0^2 = \Delta_{ ext{total}}^2 + \Delta_{\geq 1}^2$$

 $E_{cm} = 7 \text{ TeV}$

 $m_H = 165 \,\mathrm{GeV}$

NNLO

--- NLO