

MDI – Solenoidal Field Effects on BIB

D. Calzolari (CERN – SY/STI/BMI)

Outline

- MDI geometry:
 - Lattices under study
 - Accelerator line and detector area
 - Solenoidal field in the detector area
- 10 TeV solenoidal field effects:
 - Effects of the solenoidal field with the old lattice

Interaction region: MDI

- MDI is a difficult challenge for the muon collider. First studies were done by the MAP collaboration (energies up to 6 TeV). So far, IMCC focused on studies for energies up to 10 TeV.
- Objectives of the new studies:
 - Devise a conceptual IP design achieving **background** levels **compatible** with **detector operation**, both in terms of physics performance and acceptable cumulative radiation damage.
 - The focus energies are 3 TeV and 10 TeV.

Geometry of the MDI

MDI: past results and geometry

- In the context of the MAP collaboration, the muon collider detector background and Machine-detector interface has been thoroughly studied [5-8].
- They observed that most background particles are generated in the last 25 m straight section, except muons that can be produced further away.
- The MAP collaboration optimized nozzles for colliders up to 1.5 TeV (with MARS code).
- Recent FLUKA results are in a eccellent agreement with the past studies.

FLUKA/MARS15 results for the BIB of a 1.5 TeV muon collider from [9]

Particle (E_{th})	MARS15	FLUKA
Photon (100 keV)	8.610^{7}	5 10 ⁷
Neutron (1 meV)	7.610^{7}	$1.1\ 10^{8}$
Electron/positron (100 keV)	7.510^{5}	$8.5 \ 10^{5}$
Ch. Hadron (100 keV)	3.110^4	$1.7 \ 10^4$
Muon (100 keV)	$1.5 \ 10^{3}$	$1 \ 10^{3}$

MDI: nozzle details

• Our implementation of the nozzle follows the original design from MAP collaboration

Field in the detectors: effect

- The scope of these simulations is to assess the effects of the solenoidal field in the detector area. The field is assumed to be hard edge
- I conducted the same studies for the 10 TeV machine to answer the same questions: is the solenoidal field strongly affecting the BIB particle going in the detector area?
- The machine configuration is the one without the long drift, but the same considerations applies also in that case.

10 TeV: n and y spectra

No difference seen for photons and neutrons

10 TeV: e+/e- energy

Significant difference when the magnetic field is absent. The 3.57 and 5 T cases are similar

10 TeV: e+/e- crossing position

and the second s

10 TeV: e+/e- time

0

Conclusions

- Having no field increases the number of electrons and positrons going in the detector area.
- The strength of the solenoidal field is not strictly dominating the BIB from the muon decay (changes from 3.57 to 5 T are minimal)

