(ON GOING) 4D COUPLED TRANSVERSE PHASE SPACE INVESTIGATIONS AT PITZ.

Chris Richard DESY PITZ

24.06.25

DESY.

Photo Injector Test facility at DESY in Zeuthen (PITZ)

Main goal: Provide optimized electron sources for FLASH and European XFEL

Beam characterization

- Momentum low and high energy disperive arms
- Bunch size scintillating screens
- Bunch length TDS
- Longitudianl phase space TDS, tomography
- Transverse phase space Slit-screen scans

2D phase space measurements

Use slit-screen method to measure the X and Y phase spaces

Beam characterization

- Insert slit into beam. Measure beamlet profile downstream with screen.
- Beamlet profile is dominated by divergence at the slit → use to reconstruct the angle profile
- Step slit through the beam to measure local angle profiles across the whole beam
- Combine profiles to reconstruct the phase space

2D phase space measurements

Use slit-screen method to measure the X and Y phase spaces

Beam characterization

CDS

booster

Gun

 \boxtimes

DESY.

LEDA

- Insert slit into beam. Measure beamlet profile downstream with screen.
- Beamlet profile is dominated by divergence at the slit \rightarrow use to reconstruct the angle profile
- Step slit through the beam to measure local angle profiles across the whole beam
- Combine profiles to reconstruct the phase space

Optimizing 2D emittance [1]

Gun quads reduce emittance but keep x-y disparity

Optimization procedure: Scan gun solenoid and laser spot size to find lowest emittance

Standard practice: symmetrize beam size with normal and skew quad near exit of the gun

- Typically see some difference between X and Y emittances, but it is removed when the X and Y beam sizes is symmetrized
 - This was the case for gun 5.1 and previous generations
- For gun 5.2, this procedure significantly reduced the emittance
 - But X-Y disparity remains → Problem was caused by a change in the beamline from gun 5.1 to 5.2

⁵

Optimizing 2D emittance [1]

Gun quads reduce emittance but keep x-y disparity

Optimization procedure: Scan gun solenoid and laser spot size to find lowest emittance

Standard practice: symmetrize beam size with normal and skew quad near exit of the gun

- Typically see some difference between X and Y emittances, but it is removed when the X and Y beam sizes is symmetrized
 - This was the case for gun 5.1 and previous generations
- For gun 5.2, this procedure significantly reduced the emittance
 - But X-Y disparity remains \rightarrow Problem was caused by a change in the beamline from gun 5.1 to 5.2

6

Attempts to optimize 2D emittance [2]

Bucking coil on gun 5.2 was was exchanged due to vacuum leak

There is a bucking solenoid behind the gun to ensure zero magnetic field on the cathode

- This magnetic was recently exchanged.
 - Field from the new magnet may be different →
 Need new working set point
- Scanning the bucking coil current shows some improvement to the emittance

Emittance (mm mrad)

4D (

Tilted beamlets

Many measurements have tilted beamlets \rightarrow 4D coupling

Uncoupled beam

- X angle is independent of Y (and vise versa)
- Beamlets expand uniformly after slit \rightarrow stays vertical/horizontal

4D emittance measurements

Method of VPP

Pepper Pot

- Insert mask with grid of holes into the beam
- Measure beamlet positions on a downstream screen
- Calculate X and Y angle of each beamlet by comparing the beamlet position to the hole position

Grid

Crossed horizontal **Virtual Pepper Pot (VPP)** Pepper-pot-like beamlet and vertical Cannot instert X and Y slits at the same time to form a ٠ beamlets hole \rightarrow Do virtual crossing of slit position Crossed slit Cross beamlet images to create a virtual pepper pot ٠ positions Pepper-pot-like hole mask/image Y' = 0Use this to reconstruct the 4D phase space ٠ X' = 0X' = 0

Developed by N. Aftab

Results of VPP analysis

Examples from simulations – Uncoupled beam

Examples from simulations – coupled beam

26.06.25

Same simulation as previous slide, but added a skew quad directly before the slit

VPP of initial measurements of gun 5.1

With gun quad optimization

VPP of initial measurements of gun 5.2 [1]

No gun quad or bucking optimization

Asymmetric phase space: Angles in one corner of the beam are "shoved" in

Effect is primarily in lower right corner of the beam

Changes with gun quad symmetrization

Overall improvement But still see coupling in lower right corner

Optimized bucking coil current and gun quads

Not much improvement from only using gun quads

Summary

Assymetric 4D phase spaces measured with gun 5.2 \rightarrow further investigations ongoing

Measured 0.5 mm mrad X-Y emittance

But have large X-Y emittance diparity

Assymmetric 4D phase spaces measured

Causes large 2D emittances and X-Y disparity Emittance can be improved by symmetrizing the beam with normal and skew quad near the gun and optimizing bucking coil current. But X-Y disparity remains Most significant effect is on lower right corner of the beam

Possible source: laser vacuum mirror

Located on +x side of beamline

The beam could excite wakefields if passing too close. Previously had a steerer between the gun and mirror to steer away \rightarrow removed because of space constraints with symmetric coupler

Vielen Dank

Thanks to the PITZ group, especially the shift crews

Kontakt

Chris Richard Telefon: +49 (0)33762 7-7325 E-Mail: christopher.richard@desy.de

Deutsches Elektronen-Synchrotron DESY Zeuthen

Platanenallee 6 15738 Zeuthen www.desy.de

