Simulation-based optimization of the injection of ultrashort non-**Gaussian electron** beams into a storage ring

Jens Schäfer, M. Fuchs, B. Härer, R. Ruprecht, M. Schwarz, M. Schuh, C. Xu

Content

- **1.** Motivation cSTART and Injection Line (IL)
- 2. Challenges and solving strategies
- **3. Longitudinal compression**
- **4. Transverse Matching**

Jens Schäfer (et al.) KIT – IBPT

cSTART motivation

compact ST orage ring for Accelerator Research and Technology

- Injection and storing of ultrashort LPA beams
- Opportunity to study non-equilibrium beam physics
- FLUTE as 2nd injector for comparison

Development since initial IL design

- Conceptual initial design laid the foundation of IL
- cSTART advanced towards Final Design Report stage
- Advanced IL simulations required:
 - Addressing technical constrains (space claims)
 - Solutions for different beam parameter and optics
 - Speed up simulation time from months to days

Overview

FLUTE: bunch creation up to 90 MeV

LINAC

#

14

32

4

- IL1: vertical arc around storage ring
- IL2: tilted DBA into the horizontal plane
- IL3: matching section and injection
- VLA-cSR: cSTART storage ring

Injection Line Challenges

- Tight geometrical constrains
- Handling vertical, horizontal and tilted deflections
- Longitudinal bunch compression to femto-seconds!
- Transverse matching to storage ring
- Coping with non-linear effects and xy-coupling
- Adaptable for a parameter range (q, E, chirp ...)

Bunch compressor

- FLUTE Bunch compressor (FL_BC) delayes low-energy electrons
- The BC "shears" the long. phase space counter-clockwise by R₅₆

$$R_{56} = \int \frac{\eta_{xy}(s)}{\rho_{xy}(s)} \, \mathrm{ds}$$

• A bunch with a positive chirp *h* compresses

 $h = \partial \delta_p / \partial z$ $h^{-1}(S_2) = h^{-1}(S_1) + R_{56}$

- Transporting ultrashort bunches leads to intense CSR bursts, energy loss and particle losses.
- A fs-bunch cannot be transported through the IL!

Initial chirp

- IL designed to compress the bunches just at the septum.
- FLUTE linac operation on "opposite flank" for a negative chirped bunch.

IL phase space operation

-200

0

dz / µm

200

Starting with a negative chirp

and compresses in IL2 & IL3

Strategy towards an optics solution

- Compose the TL out of achromatic sections: η=0 before/after section
- Only Quads at $\eta \neq 0$ influence long. Dynamics
- All Quads influence transverse dynamics

Optics discussion:

- 1. solve long. compression in η≠0 sections
- 2. solve transverse matching in η=0 sections

8 27/06/25 Jens Schäfer

Full compression condition

- Bunch chirp transforms by R_{56} $h^{-1}(S_2) = h^{-1}(S_1) + R_{56}$
- Initial chirp: h⁻¹(S₁) = -2.8 cm⁻¹
- Full compression: h⁻¹(S₂) = 0 cm⁻¹
- Full compression condition (FCC):

 $\sum_{i} R_{56,i} = -h^{-1}(S_1)$

- The sum of all R₅₆ values have to counteract the initial chirp
- BC, IL2 & IL3 have limited margin in R₅₆
- IL1 designed for flexible R₅₆ value

$$R_{56,\text{IL1}} = -h^{-1}(S_1) - R_{56,\text{BC}} - R_{56,\text{IL2}} - R_{56,\text{IL3}} - R_{56,\text{ToF}}$$
$$R_{56,\text{IL1}} = -17.7 \text{ cm}$$

Section	Structure	R56 / cm
BC	BC	-2.5
IL1	HBA	[-420; +130]
IL2	DBA	+3.4
IL3	DBA	+20.1
ToF		-0.4

IL1 optics with NN

- Investigating the full parameter volume of possible optics
 - IL1 optics serves 9 quadrupoles
 - 5 individual quadrupoles, considering mirror symmetry
 - 4 open DoF, considering achromaticity
- **4 input** parameter: K₁-values of quadrupoles: A3, A4, B2, B3
- For one set of inputs, several optic functions are calculated, e.g. R_{56} and Twiss functions max values \rightarrow **10 outputs**
- Repeated for different input combinations → created ~ 16.000 different input/output pairs
- This data is used for training a NN^{*} and constructing a surrogate model (SM).
- SM prediction has high accuracy: Pearson correlation coefficient > 0.99 for 6/10 outputs, e.g. R_{56}
- SM allows for an investigation of complete parameter volume with only 16.000 simulations, taking minutes instead of days!

*PyTorch: 6 layers, 32 neurons fully connected, feedforward, min-max-normalized, rectified linear unit (ReLU) activation function, Adam optimizer, 9:1 training:evaluation

Transverse Optics

- Remaining quadrupoles utilized for
 - Beam transport (FLUTE, IL1, IL2)
 - Matching (IL2, IL3) with 6 quadrupoles
- 6D tracking shows non-gaussian bunch shape at injection point due to IL2 rotation and higher order effects
 - → Matching optimization based on expensive 6D tracking,
 - \rightarrow NN training not feasible
 - \rightarrow Ideal for Bayesian Optimization (BO)
- BO implementation in python with *xopt*
- Fully customizable optimization function f
 - Calculation of matching parameter : ($\beta_{x,y}$, $\alpha_{x,y}$, $\eta_{x,y}$) directly from 6D particle distribution
 - trimming of long non-gaussian tails

Work in progress...

Summary

No ultra-short bunches during transport

Full compression condition (FCC)

 $R_{56,\text{IL1}} = -17.7 \,\text{cm}$

- NN & SM make IL1 optics for entire parameter volume accesible
- Allows fast investigation and finally formulating for optimization criterions

- BO implemented for Matching
- Approach for coping with non-linearities

Summary & Outlook

No ultra-short bunches during transport

Full compression condition (FCC)

```
R_{56,\text{IL1}} = -17.7 \,\text{cm}
```

- NN & SM make IL1 optics for entire parameter volume accesible
- Allows fast investigation and finally formulating for optimization criterions

• Adding higher order dynamics to the SM

- BO implemented for Matching
- Approach for coping with non-linearities

• Further ingeneering on optimization function f required

Backup Slides

13 27/06/25 Jens Schäfer

Backup: IL1 optics

- IL1 optics are calculated independent of surrounding IL.
- Considering Mirror symmetry, IL1 optics have <u>5 open DoF</u>: K₁-strengh of quadrupoles: A3, A4, AB, B2 and B3.
- For a given set of K₁-values, the twiss parameter and dispersion are defined by: $\alpha_{(x,v)}(s_{svm}) = 0$

$$\beta_{(x,y)}(s_{\text{sym}}) = 1 \eta_{(x,y)}(s_0) = 0 \eta'_{(x,y)}(s_0) = 0$$

- 1 DoF (quadrupole AB) is set to met <u>achromaticity</u>: $\eta'_{(x,v)}(s_{sym}) = 0$
- Remaining DoF are considered Input: A3, A4, B2, B3
- A set of **output** parameters is calculated:
 - Required quadrupole AB strength (K_1)
 - $-R_{56}$ of the IL1 section
 - Entrance Twiss parameters: $\alpha_{x,y}, \beta_{x,y}$
 - Integrated product $\int \beta_y(s) \cdot \eta_y(s) ds$ inside the

sextupole and each of the three dipoles.

These instructions are used to create a dataset of ~16.400 input/output pairs.

A data selection is applied: $-20 \text{ cm} < R_{56} < -10 \text{ cm}$

The remaining 6,400 input/output pairs are used to train a feedforward Neural Network*.

*PyTorch: 6 layers, 32 neurons fully connected, min-max-normalized, rectified linear unit (ReLU) activation function, Adam optimizer

Backup: BO optimization function

- BO Implementation in python with xopt
- allows for a custom optimization function:
 minimization of f = L · $\sum_{i} m_i$
- 1. L: beam losses in %
- 2. m_i: Matching metric for each parameter V_i: ($\beta_{x,y}$, $\alpha_{x,y}$, $\eta_{x,y}$)
 - $m_i = \text{sene}(V_{1,} V_2)$ (soft-edge not equal), sensitivity function
 - Distance between V_1 (desired value in VLA-cSR) and V_2 (injected)
 - $-V_2$ calculated directly from macro particle distribution
 - Allows for advanced pre-processing, e.g. outlier handling

sene
$$(V_1, V_2) = \frac{|V_1 - V_2|}{\tau |V_1|} \cdot H(|V_1 - V_2| - \tau |V_1|)$$

