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cSTART motivation
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compact STorage ring for Accelerator Research and Technology

▪ Injection and storing of ultrashort LPA beams 

▪ Opportunity to study non-equilibrium beam physics

▪ FLUTE as 2nd injector for comparison

Development since initial IL design

▪ Conceptual initial design laid the foundation of IL 

▪ cSTART advanced towards Final Design Report stage

▪ Advanced IL simulations required:

− Addressing technical constrains (space claims)

− Solutions for different beam parameter and optics 

− Speed up simulation time from months to days

cSTART:

▪ LPA‘s

▪ FLUTE

▪ Injection Line (IL)

▪ Storage ring (VLA-cSR)



0verview

27/06/25 Jens Schäfer 4

▪ FLUTE:      bunch creation up to 90 MeV

▪ IL1: vertical arc around storage ring

▪ IL2: tilted DBA into the horizontal plane

▪ IL3: matching section and injection

▪ VLA-cSR:  cSTART storage ring
# Magnets

14 Dipoles

32 Quadrupoles

4 Sextupoles

1 Septum

1 Kicker

Injection Line Challenges 

▪ Tight geometrical constrains

▪ Handling vertical, horizontal and tilted deflections

▪ Longitudinal bunch compression to femto-seconds!

▪ Transverse matching to storage ring

▪ Coping with non-linear effects and xy-coupling

▪ Adaptable for a parameter range (q, E, chirp …)



Bunch compressor
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▪ FLUTE Bunch compressor (FL_BC) 

delayes low-energy electrons

▪ The BC “shears” the long. phase space 

counter-clockwise         by R56

 

▪ A bunch with a positive chirp h compresses

▪ Transporting ultrashort bunches leads to intense 

CSR bursts, energy loss and particle losses.

▪ A fs-bunch cannot be transported through the IL!

positive 

chirp

h > 0



Initial chirp
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▪ IL designed to compress the bunches 

just at the septum. 

▪ FLUTE linac operation on 

“opposite flank” for a negative chirped bunch.

 IL phase space operation 

▪ Starting with a negative chirp 

▪ Bunch elongates first in BC & IL1 (R56<0)

▪ and compresses in IL2 & IL3        (R56>0) 

→ No ultrashort bunches during transport. 

positive 

chirp

h > 0

Negative

chirp

h < 0

h < 0 h > 0



Strategy towards an 
optics solution
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▪ Compose the TL out of achromatic sections: 

η=0 before/after section

▪ Only Quads at η≠0 influence long. Dynamics

▪ All Quads influence transverse dynamics

Optics discussion:

▪ 1. solve long. compression in 

η≠0 sections 

▪ 2. solve transverse matching in 

η=0 sections



▪ Bunch chirp transforms by R56

 

▪ Initial chirp:  h-1(S1) = -2.8 cm-1

▪ Full compression: h-1(S2) = 0 cm-1

▪ Full compression condition (FCC):

▪ The sum of all R56 values have to 

counteract the initial chirp

▪ BC, IL2 & IL3 have limited margin in R56 

▪ IL1 designed for flexible R56 value

Full compression condition
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Section Structure R56 / cm

BC BC -2.5

IL1 HBA [-420; +130]

IL2 DBA +3.4

IL3 DBA +20.1

ToF -0.4



IL1 optics with NN
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▪ Investigating the full parameter volume of possible optics 

− IL1 optics serves 9 quadrupoles

− 5 individual quadrupoles, considering mirror symmetry

− 4 open DoF, considering achromaticity 

▪ 4 input parameter: K1-values of quadrupoles: A3, A4, B2, B3 

▪ For one set of inputs, several optic functions are calculated, 

e.g. R56 and Twiss functions max values → 10 outputs 

▪ Repeated for different input combinations

→ created ~ 16.000 different input/output pairs

▪ This data is used for training a NN* and constructing a 

surrogate model (SM). 

▪ SM prediction has high accuracy: 

Pearson correlation coefficient > 0.99 for 6/10 outputs, e.g. R56

▪ SM allows for an investigation of complete parameter volume 

with only 16.000 simulations, taking minutes instead of days!

*PyTorch: 6 layers, 32 neurons fully connected, feedforward, min-max-normalized, 
rectified linear unit (ReLU) activation function, Adam optimizer, 9:1 training:evaluation



Transverse Optics
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▪ Remaining quadrupoles utilized for 

− Beam transport (FLUTE, IL1, IL2) 

− Matching (IL2, IL3) with 6 quadrupoles

▪ 6D tracking shows non-gaussian bunch shape at 

injection point due to IL2 rotation and higher order effects

→ Matching optimization based on expensive 6D tracking, 

→ NN training not feasible

→ Ideal for Bayesian Optimization (BO)

▪ BO implementation in python with xopt

▪ Fully customizable optimization function f 

− Calculation of matching parameter : (𝛽x,y , 𝛼x,y , 𝜂x,y ) 

directly from 6D particle distribution 

− trimming of long non-gaussian tails 

 Work in progress…

Transport Transport     Matching



• BO implemented for Matching

• Approach for coping with

non-linearities

Summary

No ultra-short bunches during transport
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Full compression condition (FCC)

• NN & SM make IL1 optics for entire

parameter volume accesible

• Allows fast investigation and finally

formulating for optimization criterions



• BO implemented for Matching

• Approach for coping with

non-linearities

• Further ingeneering on optimization
function f required

Summary & Outlook

No ultra-short bunches during transport
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Full compression condition (FCC)

• NN & SM make IL1 optics for entire

parameter volume accesible

• Allows fast investigation and finally

formulating for optimization criterions

• Adding higher order dynamics to the SM



Backup Slides

27/06/25 Jens Schäfer 13



Backup: IL1 optics
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▪ IL1 optics are calculated independent of surrounding IL.

▪ Considering Mirror symmetry, IL1 optics have 5 open DoF: 

K1-strengh of quadrupoles: A3, A4, AB, B2 and B3.

▪ For a given set of K1-values, the twiss parameter and 

dispersion are defined by:

▪ 1 DoF (quadrupole AB) is set to met achromaticity:

▪ Remaining DoF are considered Input: A3, A4, B2, B3

▪ A set of output parameters is calculated:

These instructions are used to create a dataset of ~16.400 

input/output pairs. 

A data selection is applied: 

The remaining 6,400 input/output pairs are used to train 

a feedforward Neural Network*.

*PyTorch: 6 layers, 32 neurons fully connected, min-max-normalized, 
rectified linear unit (ReLU) activation function, Adam optimizer



Backup: BO optimization function
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▪ BO Implementation in python with xopt

▪ allows for a custom optimization function:

 minimization of 

1. L: beam losses in %

2. mi: Matching metric for each parameter Vi: (𝛽x,y , 𝛼x,y , 𝜂x,y )

− mi = sene(V1, V2 ) (soft-edge not equal), sensitivity function 

− Distance between V1 (desired value in VLA-cSR) and V2 (injected) 

− V2 calculated directly from macro particle distribution 

− Allows for advanced pre-processing, e.g. outlier handling 
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