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Detuning of an RF cavity from a physics perspective

• The change of resonance frequency results in a decreasing
amplitude at the operating frequency [1].

• The decreasing amplitude can be compensated by increasing
input RF power, but this is highly inefficient in terms of energy
consumption.

Consider a blend of stationary and transient dynamics

𝑥𝑡+1 = 𝛼 ∙ 𝑥𝑡
𝐷𝑀𝐷 + 1 − 𝛼 ∙ 𝑥𝑡

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
, α ∈ 0,1 ,

where 𝑥𝑡
𝐷𝑀𝐷 and 𝑥𝑡

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
are predictions for stationary and

transient dynamics, and where 𝛼 and 𝑥𝑡+1 are a tunable
blending weight and a blended prediction, respectively. Then let
𝛼 = 1 − 𝐾𝑡 and rearrange terms accordingly

𝑥𝑡+1 = 𝑥𝑡
𝐷𝑀𝐷 + 𝐾𝑡 ∙ 𝑥𝑡

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
− 𝑥𝑡

𝐷𝑀𝐷 ,

which this is a classical Kalman update, so we can interpret 𝛼 as
a Kalman gain. In a neural network implementation, this
blending can look as follows

Validation of Kalman-inspired blending

As a proof-of-concept we set 𝛼 manually when testing our principle
on transient time series. As shown below, the DMD, which was 
trained on stationary data, cannot handle transients. In contrast, 
the Transformer demonstrates its capability to capture transient 
behavior. Hence, blending the two allows to improve the overall
prediction.

• We proposed a novel architecture that blends a
global, DMD-like, Koopman operator with a local,
attention-driven operator, inspired by the structure of
a Kalman filter.

• This novel approach aims to increase the
interpretability of a machine learning-based solution,
which is crucial in control-oriented applications.

• We demonstrated the viability of this approach on
real-world RF cavity data.

• This work opens promising directions for future
research, including the development of a principled
mechanism for dynamic operator weighting in place
of manual tuning.

In the light of recent developments to employ high-Q superconducting cavities to reduce the energy consumption of particle accelerators, the problem of minimizing cavity detuning becomes highly relevant. Meanwhile, RF cavities are known for their non-stationary behavior, so finding a proper modeling approach is crucial for any model-based detuning

control. In this contribution, we present a data-driven modeling framework that combines two complimentary perspectives on dynamical systems: the Koopman operator approach, which captures global patterns in cavity behavior, and Kalman-inspired ideas, which enable local, adaptive adjustments in response to changing cavity conditions. Following this, our architecture 1) separates long-

term structure from local variability and then 2) blends them using a tunable weighting mechanism. We demonstrate the effectiveness of this approach on both synthetic cavity data and real-world cavity measurements. The results show a potential to make the detuning control more robust to the non-stationary cavity behavior.
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Principle of cavity detuning. Adapted from [1].
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Koopman operator theory offers an alternative: we lift the system
into a higher-dimensional observal space, where the dynamics
evolve linearly

𝒦𝑔 𝑥𝑡 = 𝑔 𝑥𝑡+1 = 𝑔 𝑓 𝑥𝑡 ,

where 𝑔 is a set of observable functions 𝑔 ∶  𝒳 → ℝ, and where 𝒦
is an approximation of an infinite-dimensional Koopman operator.

Detuning modeling and control

• Despite numerous works detuning compensation remains an 
open issue [2].

• There must be a new algorithm for detuning modeling that is

✓ robust to time-varying cavity behavior,

✓ able to learn cavity dynamics online,

✓ interpretable to avoid black box modeling.

METHODS
Linear prediction in terms of a Koopman operator

Consider one-dimensional time series 𝑥𝑡 𝑡=1
𝑇 that represent an 

observable state of a discrete-time detuning process

𝑥𝑡+1 = 𝑓 𝑥 , 𝑥 ∈ 𝒳 ⊂ ℝ,

where 𝑥𝑡 is a state at time 𝑡 and 𝒳 is a set of all physically
realizable real-valued states. Even though the underlying
equations of 𝑓 are well-known, the direct modeling of 𝑓 is often
intractable due to ist nonlinear and time-varying nature.

Real-world cavity measurement

Kalman-inspired blending of dynamics prediction

Frequency Bandwidth Quality factor

Pillbox cavity 1.3 GHz 708 kHz 1.8 kU

Comparison of model predictions on transitional real-world time series. Upper 
row: DMD only. Bottom row: DMD blended with Transformer.

Neural network architecture for our model.
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