

Temporal Resolution Analysis of the β-Dependency of Radially Coupled FFC Designs

- Different designs of radially coupled FFCs performed well at GSI
- Designed for heavy ions with velocities of $\beta < 20\%$
- Uses geometrical secondary electron suppression and bias to reduce impact of the secondary electrons on the signal

Tapered radially coupled FFC (TRCFFC) build at GSI workshop. Inner collector 3D-printed at Fraunhofer IWS Dresden.

 Ar^{10+} @ 11.4 *MeV* / *u* in the experimental cave X2 of GSI with different bias settings

Temporal Resolution Analysis of the β-Dependency of Radially Coupled FFC Designs

- How would these work in an electron facility based on CST simulations?
 - Bandwidth
 - Temporal resolution
- What are limitations? What would be necessary to make it work?

High Bandwidth Coaxial FFC (HBFFC)

ACKNOWLEDGMENT

This work is supported by the German Federal Ministry of Education and Research (BMFTR) under contract no. 05P21RORB2. Joint Project 05P2021 - R&D Accelerator (DIAGNOSE)

UNIVERSITY OF APPLIED SCIENCES

Radially Coupled Coaxial FFC (RCFFC)

