High-reliability bunch arrival time monitor with fs precision

J. Kral, M. Buechler, J. Georg, J. Roever, B. Lautenschlager, DESY, Hamburg, MSK

Electro-optical bunch arrival-time measurement (BAM) is a well established method. Yet no machine provides synchronization as a default operation mode. A range of pump-probe experiments depend heavily on the precision and stability of the pump-to-probe timing.

2) Improve system resolution below 1 fs rms

Ultra-fast atomic and molecular dynamics are the key to understanding some of the fundamental processes in the nature. Providing attosecond-level accelerator synchronization gives unprecedented access to the dynamics in question.

that were taken to achieve continuous 24/7 synchronization operation and sub fs rms resolution

System simplification

Automation

- Automated power-up sequence
- Clock synchronization
- Trigger synchronization

- Gain adjustment

- ADC sampling phase
- Electro-optical working point

• Single-click calibration - Beam finding

- Main objective oriented architecture, permanently assembled sub-modules, integration
- Measurement needs define the mechanics, vibration damping, whole chain thermal stabilization

S21 RF Port

- Production quality control, reproducibility, qualification and reference measurements
- Component qualification and selection

- Time vs amplitude calibration
- Dynamic range optimization
- Drift stabilization
- Long-term beam drift tracking
- Component drifts monitored
- Feed-backs

1) Noise reduction

• Optical chain optimization leads to higher quality sampling light

Three-step resolution improvement

- Supporting electronics noise reduction
- Cabling improvements

2) Bandwidth improvement

- Chromatic compensation
- Thorough modulator component selection
- RF chain optimization

3) New readout electronics - prototype tests in progress

- Improved trans-impedance amplifier
- Bandwidth, gain and dynamic range optimization

Current resolution at EuXFEL. Highlighting two latest-design measurement stations with 0.8 fs and 1.2 fs resolution. 250pC, 100 kHz - 100 MHz measurement bandwidth.

-414.B2

Bundesministerium

für Bildung

und Forschung

1932M.TL

1932S.TL

State and measurements

Low noise design

Single shot jitter measurement, 250 pC, aperture 40.5mm in linac, 22.5mm in photon tunnels, 400 bunches, 100 macropulses, fast intra-train feedback in and out of the loop (1.5 km later) synchronization measurement.

Arrival time spectrum

Ocean wave effects measured by BAM vs DAS system. [Erik Genthe, et al., High Power Laser Science and Engineering 2025]

HELMHOLTZ

two improvement steps First step: Noise reduction and chromatic dispersion Second step: Amplitude and bandwidth

"40 GHz" modulator

-8.00-