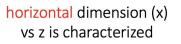
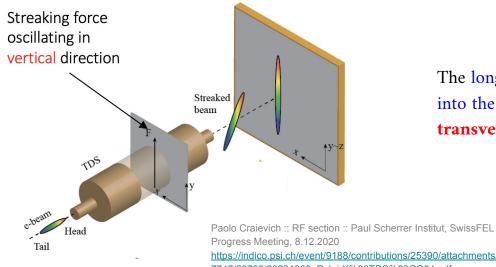


Virtual Pulse Reconstruction Diagnostic for Single-Shot Measurement of Free Electron Laser Radiation Power

Till Korten, Vladimir Rybnikov, Peter Steinbach, Mathias Vogt, Juliane Roensch-Schulenburg and Najmeh Mirian* Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden Germany Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg, Germany

Outline


- Transverse Deflecting Cavities and Their Applications in Accelerator Facilities
- ✤ FLASH X-Band TDS : PolariX
- ✤ FEL Pulse Power Reconstruction Tool at FLASH
- ✤ FEL Pulse Power Online Measurement
 - First-Order-Based Online Measurement
 - Machine Learning Based Online Measurement



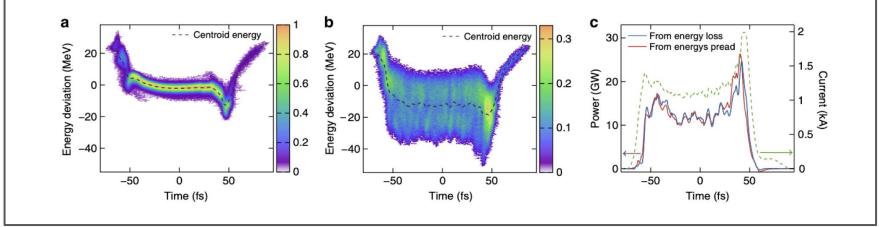
Transverse Deflecting Cavities

TDS as a diagnostic tool as high-resolution time-resolved diagnostics

The longitudinal distribution of the e-bunch is mapped into the transverse one, thanks to the time dependent transversely deflecting field.

https://indico.psi.ch/event/9188/contributions/25390/attachments/1 7747/26796/20201208 PolairX%20TDS%20CO84.pdf

Transverse Deflecting Cavitie Applications in Accelerator Facilities


- Longitudinal current profile measurement
- □ slice emittance can be measured with Quadrupole.
- □ Slice energy spread measurement with Dipole
- **FEL pulse reconstruction and FEL tuning**

FEL pulse reconstruction

 Measure of the FEL-induced lasing effects imprinted on the electron beam longitudinal phase space: C. Behrens et al., Nat. Communications 5, 3762 (2014)

 $P(t) = \Delta E(t)I(t)/e,$

slice energy loss due to lasing

FLASH X-Band TDS : PolariX

Variable polarization X-band structure (PolariX TDS) downstream of the FLASH2 undulatator

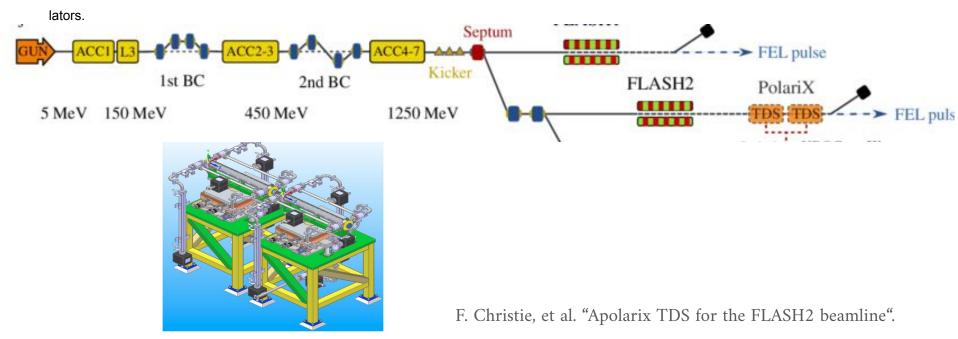
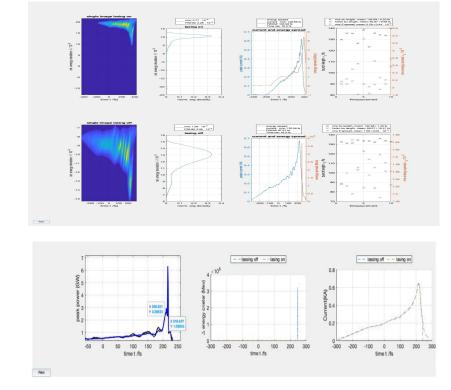



Figure 1: Technical drawing of the supports for the two PolariX TDSs at FLASH2. Courtesy of M. Föse. HELMHOLTZAI

FEL Pulse Power Reconstruction Tool at FLASH

1010		-4-2-31111-31		v shots la		nd o
e and Energy collibration	Longitudinal phase pulse reconstruction	on line measurement	scenstruction (LPGAP It setting	41) Tool		
0 100 200 400			•			
500 600 700 0 TDS setup 0 Start	1 500 for online measurmer	t write the correct range	1500 98 1	2000	2500	
te colibration	off beam	En 130	phase&litude		n 244	
De	time collibration			nergy collibration		
1st phase 2nd phase	0					ľ

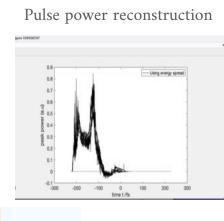
New measurement tool in FLASH main taskbar

FEL Pulse Power Online Measurement

Challenges of average method:

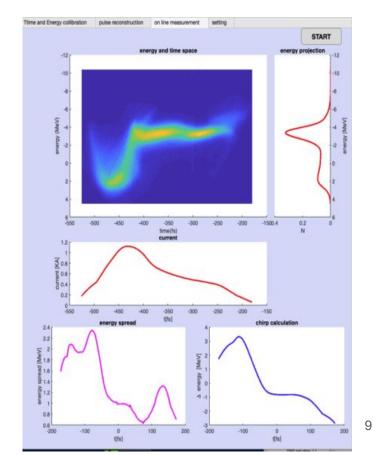
- It is not shot to shot
- It is not on-line measurement
- Instability is an issue in this method.
- After collecting lasing off data the machine can lose their previous status.

Solutions:


- → First order : Mean of several lasing-off shots
- → Accurate model: Machine learning model

First-Order-Based Online Measurement

Slice analysing, gaussian fighting for each pixel This program is able to show


- energy spread,
- Slice energy profile
- Current profile
- Energy chirp
- FEL pulse profile

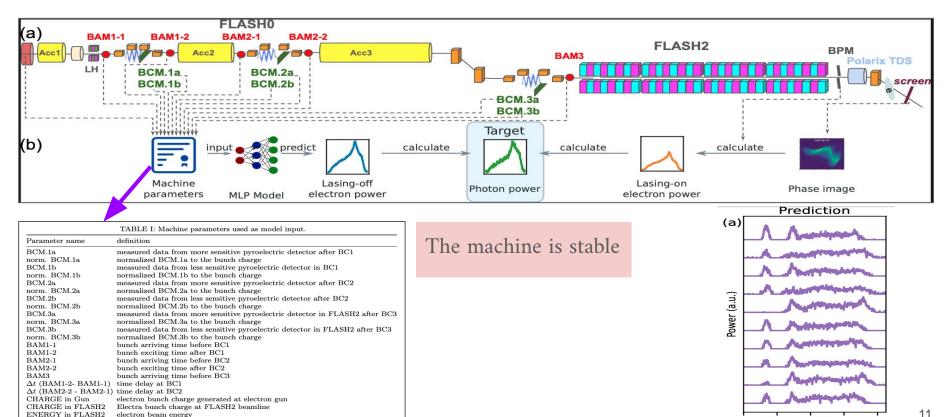
This is not accurate

Machine Learning Based Online Measurement

Providing accurate and accessible diagnoses is a fundamental challenge

- Simulation based Machine learning \rightarrow low accuracy, no reproducible
- **\diamond** Experimental based machine learning \rightarrow time consuming

>> We are using machine learning models for stable machine

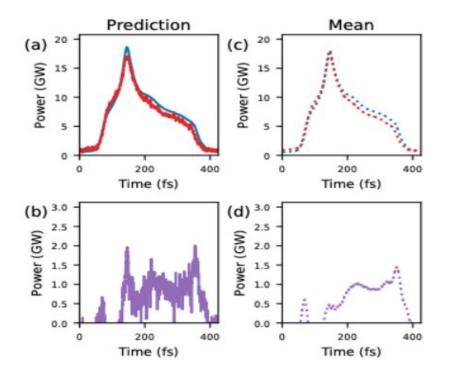


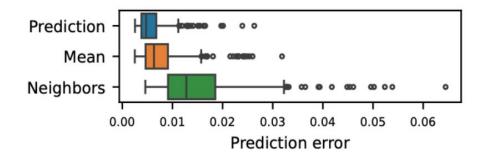
BPM x, y

Machine Learning Based Online Measurement

electron beam position before TDS in x and y directions

0 100 200 300 Time (fs)


11


400

MLP Model Training Performance

MLP model training performance.

Thanks for your attention

This work was supported by Siegfried Schreiber

Last year, our work on virtual diagnostics was recognized with a Reproducibility Award by the AI community. I would like to dedicate this honor to Siggi Schreiber, the former head of the FLASH faculty, for the help, support, and hope he gave me when I first joined FLASH.

