
Optimizing EuXFEL Photoinjector Performance via Laser Shaping Approach

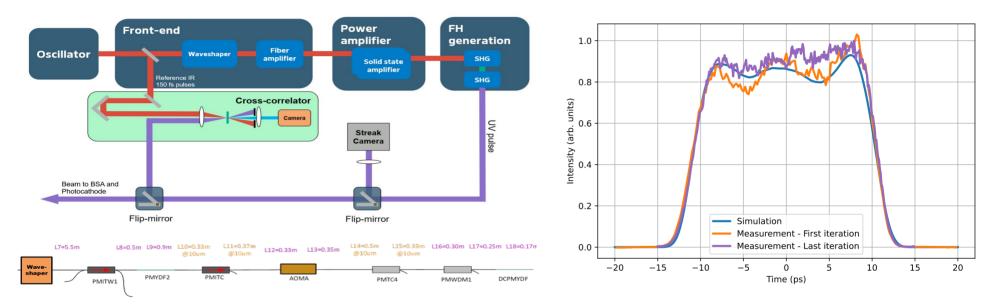
OPAL-FEL - Optimized Laser Pulses for Free-Electron-Lasers

A. Klemps², M. Cai^{1,3}, D. Ilia^{1,3}, Y. Chen¹, H. Tünnermann¹, I. Hartl¹, C. Mahnke¹, F. Brinker¹, W. Decking¹, W. Hillert³, N. Ay² ¹DESY, ²TUHH, ³UHH

Project goal

Minimal emittance at higher photon energies (30+ keV) in the EuXFEL injector by temporal laser shaping and ML driven modeling

TUHH Hamburg University of Technology



of Education

and Research

Photocathode Laser System Simulations and Experiments*

Results and Achievements

- Development of differentiable simulation software for nonlinear pulse propagation
- Gradient based shape optimization and transfer to the NEPAL laser system
- Successful operation of EuXFEL with flat-top temporal laser shape (1 week)

*Main work confined by D. Ilia (FS-LA)

Photoinjector Simulations and Experiments*

(2)

00% Projected emittance $[\mu m]$

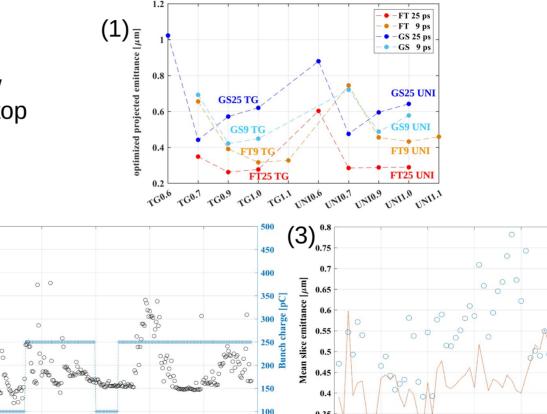
1.2

0.2

0

50

100


Measurement index #

150

200

Simulation (1)

Simulation results indicating low emittance beam yielded by flat-top bunches of 25ps length

50

250

0.35

0.3

10

20

30

Measurement index #

40

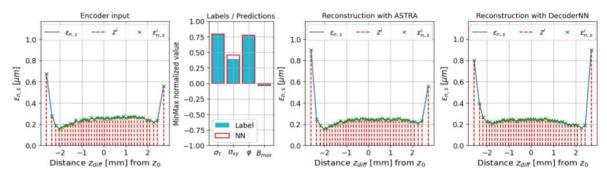
50

5.5

1.5

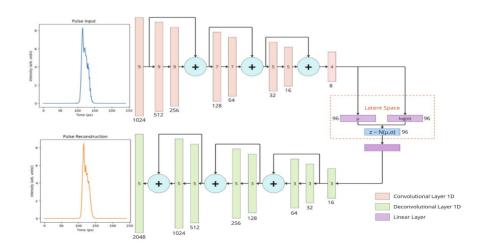
60

Experiments (2) + (3)


Best ever achieved (slice) emittance results for (250) 100pC at (0.32) 0.27µm

*Main work confined by Ye Chen and Meng Cai (MXL)

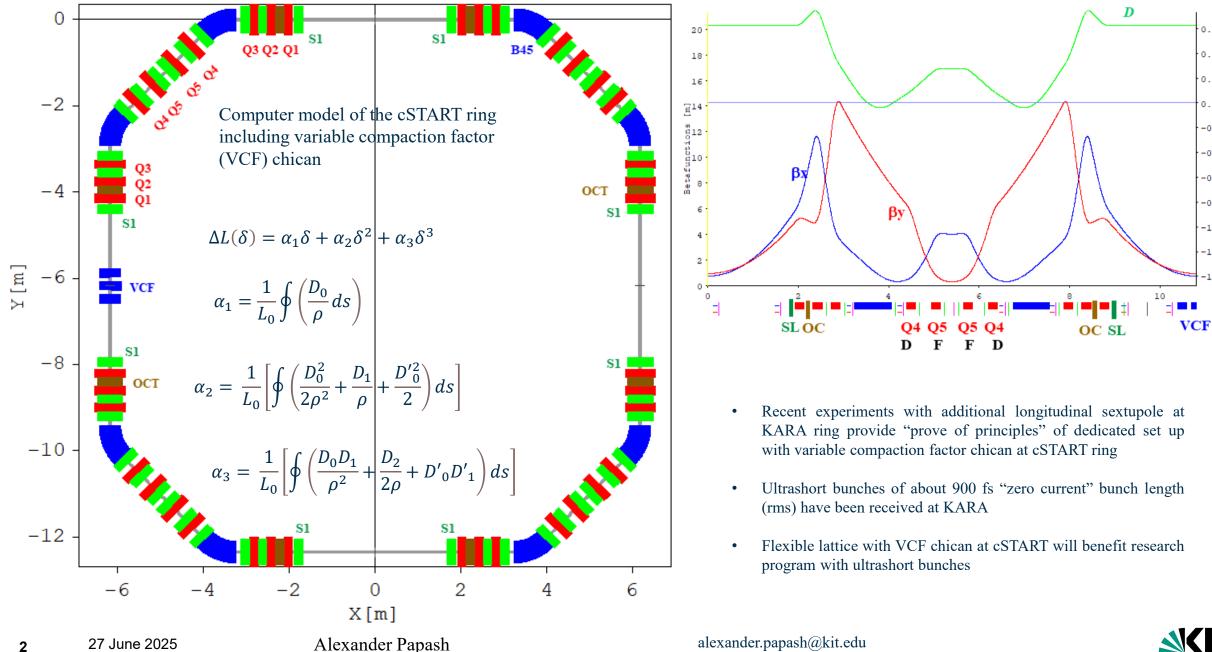
Machine Learning and Differentiable Simulations


Inverse modeling for electron gun

Successful prediction of gun parameters from slice emittance and slice mismatch measurements on simulated data

Ongoing and future work

- Development of differentiable gun forward model to be used with Cheetah
- Generative ML modeling for pulse shaping



Quasi-isochronous conditions and high order terms of momentum compaction factor at the compact storage ring A. I. Papash[†], M. Fuchs, A.-S. Mueller, R. Ruprecht,

Karlsruhe Institute of Technology, Karlsruhe, Germany

- The **compact** storage ring project for accelerator research and technology (**cSTART**) is realized at the Institute for Beam Physics and Technology (**IBPT**) of the Karlsruhe Institute of Technology (KIT)
- Flexible lattice of a ring benefits variety of operation modes. Different physical experiments including direct injection and circulation of Laser Plasma Accelerator (LPA) electrons are planned at cSTART
- Deep variation of momentum compaction factor with simultaneous control of high order terms of alpha would demonstrate the capture and storage of ultra-short bunches of electrons in a circular accelerator
- Computer studies of linear and non-linear beam dynamics were performed with an objective to estimate arrangement and performance of dedicated **three pole chican** magnets to provide **quasi-isochronous** conditions for electrons
- Additonal families of so called "**longitudinal**" **sextupoles** and **octupoles** are included into a ring lattice to control **slope** and **curvature** of momentum compaction factor as function of energy offset of particles in a bunch.

alexander.papash@kit.edu

0.6

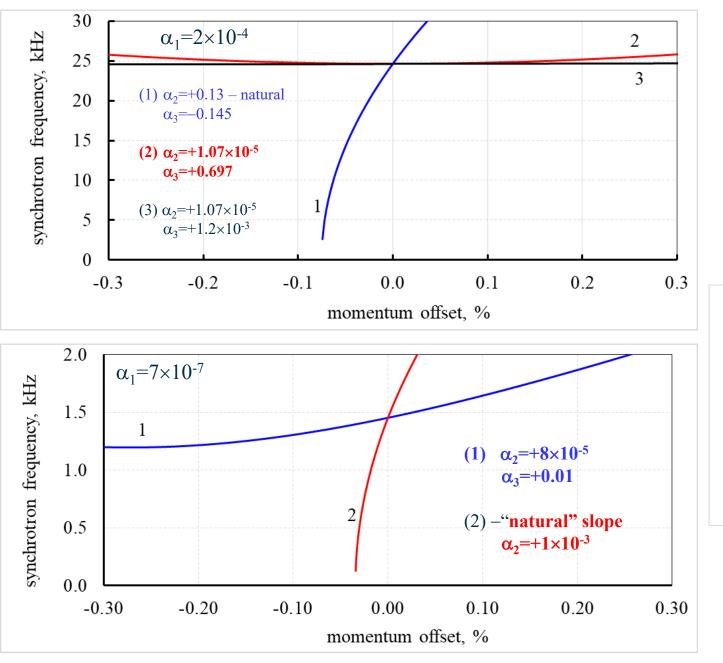
0.4

0.2

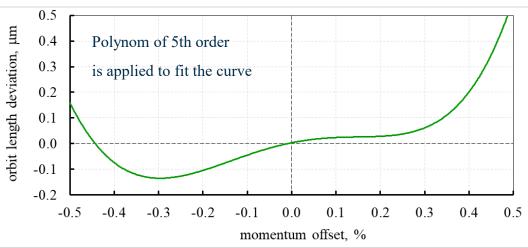
0.0

-0.2

-0.4 ដ


-0.61

-0.8


-1.0

-1.2

-1.4



- Orbit length deviation for off-momentum particles at ultralow- α optics with $\alpha_1 = 7 \cdot 10^{-7}$
- High order terms are suppressed to minimize bunch length and provide sufficient momentum acceptance

Bunch elongation is less than 0.2 μ m (0.7 fs) for particles at periphery of energy distribution $\delta_E = \pm 0.3\% (\delta_p = 0.1\% \text{ rms})$

S2E Simulation of THz FEL at PITZ with Bunch Compressor

Biaobin Li for THz group @ PITZ

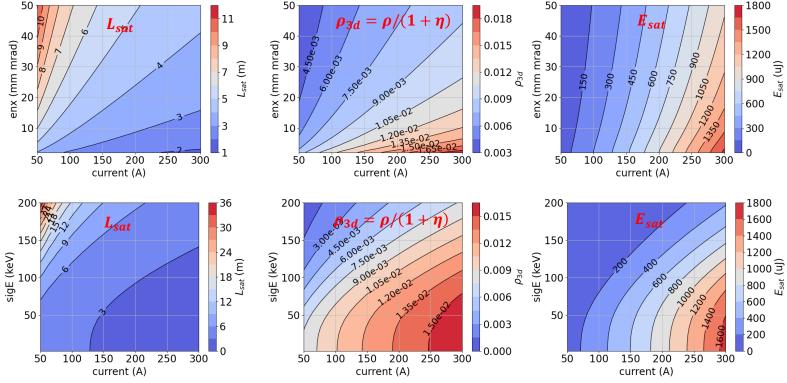
ST3 meeting, 25.06.2025 to 27.06.2025

Content

- Ming-Xie Parameterization for THz SASE FEL
- Bunch compression for gaussian beam
- Genesis simulation results
- Summary

Ming-Xie Parameterization for THz SASE FEL Electron beam for THz SASE FEL

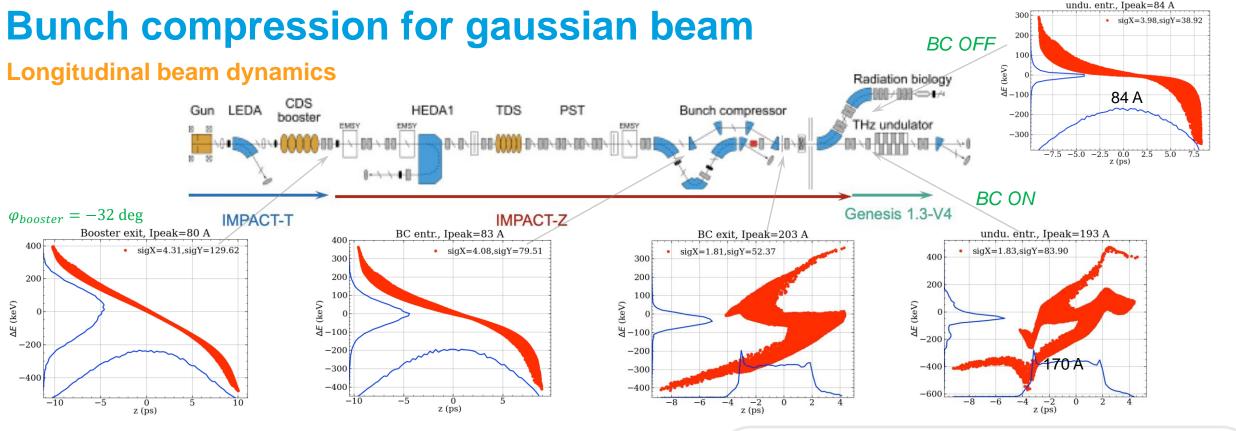
Saturation length, pierce parameter and saturation power for SASE FEL can be given by Ming-Xie's 1D equations:


$$L_{sat} = L_g \ln\left(\frac{P_{sat}}{\alpha P_n}\right)$$
$$\rho = \left[\left(\frac{I}{I_A}\right) \left(\frac{\lambda_w A_w}{2\pi\sigma_x}\right)^2 \left(\frac{1}{2\gamma_0}\right)^3\right]^{1/3}$$
$$P_{sat} \approx 1.6\rho \left(\frac{L_{1d}}{L_g}\right)^2 P_{beam}$$

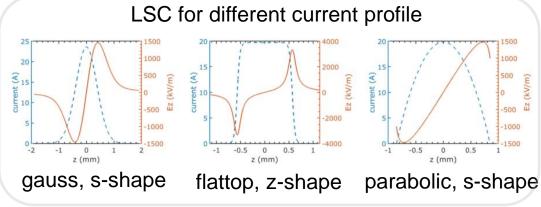
Results from scanning *beam current, emittance and energy spread* show that

For $\varepsilon_{xn} \sim 5$ um rad, $\sigma_E \sim 50$ KeV, $I \sim 100$ A:

 $L_{sat} \sim 3.5 \ m, \rho_{3d} \sim 0.01, E_{sat} \sim 300 \ \mu J$


- The output radiation energy is much more sensitive to beam current, not so sensitive to beam emittance & energy spread
 - => Higher beam current from Bunch Compression !

Beam and undulator parameters used in the scan:

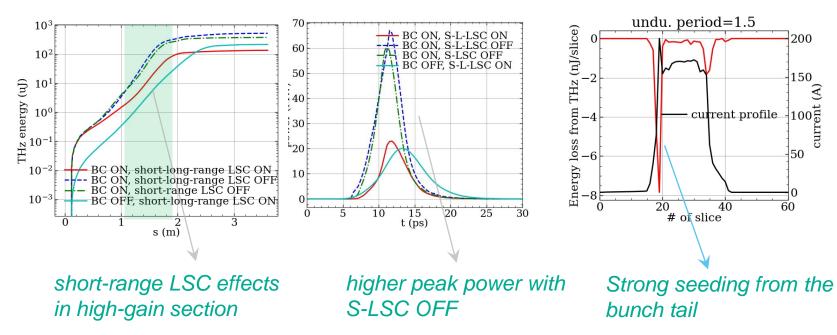

- $E_{beam} = 16.7 \text{ MeV}, \sigma_E = 50 \text{ keV}$
- $\varepsilon_{xn} = 5 \text{ um rad}, \ \beta_{x,y} = 2 \text{ m}, L_{beam} = 20 \text{ ps}$
- Planner undulator, K = 3.49, $\lambda_w = 30 \text{ mm}$

·
$$\lambda_s = 100 \text{ um}$$

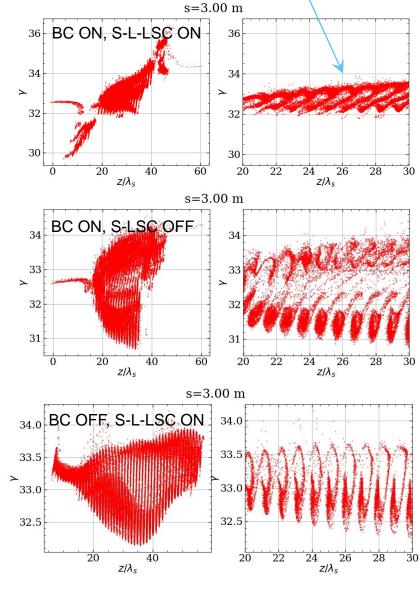
Electron beam Q = 1 nC, $\sigma_{x,y} = 0.83$ mm (BSA = 3.5 mm), $\sigma_z = 2.97$ ps

- Flattop & spike-at-tail current profile can be obtained (due to the s-shape energy chirp from LSC)

Page 4


McNeil et al., Optics communications 165.1-3 (1999): 65-70.

Coherent radiation from the sharp edge & spike of the current profile => SACSE FEL !


Genesis simulation results for gaussian beam

Short-range LSC effects in high-gain region

- The gain curve for BC ON starts much faster, and the final THz pulse is a little bit shorter than BC OFF
- > Unfortunately, the **final THz energy is lower** even current is two times higher $(80 \text{ A} \rightarrow 170 \text{ A})$ with BC ON
- For higher current, short-range LSC is important during the bunching process, it tends to smear out the micro-bunching structures → lower output power

- The bunch compressor seems limited improvement to THz FEL here
- For higher current, we need higher beam energy, or larger beam size inside the undulator to mitigate the S-LSC smearing effects!

Page 5

Summary

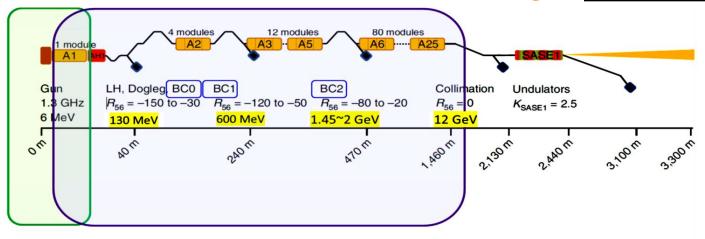
- For THz SASE FEL, the beam is much more sensitive to beam current, not so sensitive to beam emittance & energy spread => bunch compression for higher current
- Flattop & spike-at-tail current profile can be obtained using BC for gaussian beam, strong seeding from the coherent radiation of the beam tail is observed in the Genesis simulation
- For higher current, short-range LSC is important during the bunching process, it tends to smear out the micro-bunching structures => lower THz radiation energy

THANK YOU FOR YOUR ATTENTION !

Beam dynamics Optimization for a Highbrightness Photoinjector with various Photocathode Laser Pulse Shapes

S. Zeeshan, M. Krasilnikov, X.-K. Li, D. Bazyl and I. Zagorodnov

Speed Talk- 13th MT ARD ST3 Meeting 2025 Zeuthen 27.06.2025



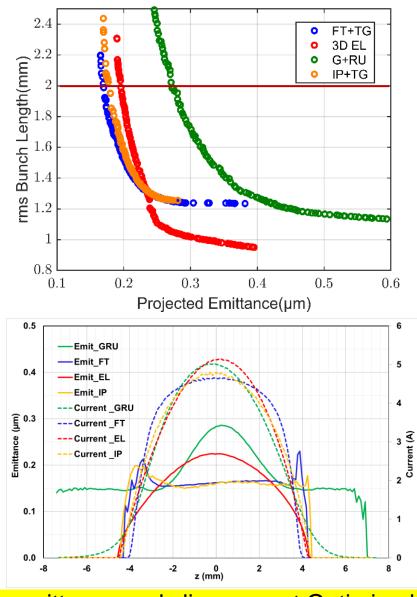
Beam Dynamics Optimization

EuXFEL CW SRF setup

- Using Multi-objective Genetic Algorithm (MOGA) based beam dynamic optimization with projected emittance and electron rms bunch length as goal functions
- > A comparison of the performance of different photocathode laser profiles;
 - Longitudinal Gaussian (G) with transverse Radial Uniform (RU)
 - Longitudinal Flattop (FT) with transverse Truncated Gaussian (TG)
 - 3D ELlipsoidal (3D EL)
 - Longitudinal Inverted Parabolic (IP) with transverse TG profiles
- > Initial optimization for injector section @ 20m
- > Best cases \rightarrow Prepared Monitors \rightarrow further tracked through S2E simulations

\bigcirc	Parameters	Values
	E _{cathode}	55 MV/m
	A1: E _{peak} (1st ½)	32 MV/m
	A1: E _{peak} (2nd ½)	32 MV/m
	Bunch Charge	100 pC
	Thermal emit	1um/mm
	Optimization at	20 m

Injector Section Start to End Simulations DESY. Beam dynamics optimization for high-brightness Photoinjector with various photocathode laser pulse shapes | 13th MT ARD ST3 Meeting 2025 in DESY Zeuthen | Sumaira Zeeshan | Page 2 27. 06.2025



Optimization for Injector Section

Comparison of four Photoinjector Laser shapes

- Best cases for 2mm rms electron bunch length are compared
- This 2mm BL → corresponds to 5 kA peak current and it is sufficient to compress the beam at XFEL

Best Cases for 2mm rms electron bunch length					
Parameters	G+RU	FT+TG	EL	IP+TG	
Proj emit (mm mrad)	0.26	0.17	0.19	0.18	
Long emit (keV mm)	610	395	506	471	
Energy spread (MeV)	0.56	0.36	0.27	0.76	
Average 4D Bright (A/µm ²)	1231	1708	1983	2020	

Slice emittance and slice current Optimized cases

Start to End Simulations

- Highest brightness at the end of injector for the IP+TG → further tracking for final evaluation as compared to other photocathode laser shapes
- S2E simulations to see the behaviour under compression under collective effects
- Multistage bunch compression involves
 - the mixing of longitudinal beam slices \rightarrow local beam parameters as slice emittance & energy spread become critical
 - The shape of the photocathode laser \rightarrow distribution of the slice parameters within the bunch
- The final estimation of 4D and 6D brightness at the end of S2E simulations reveal ?

Details on my poster

Contact

DESY. Deutsches Elektronen-Synchrotron

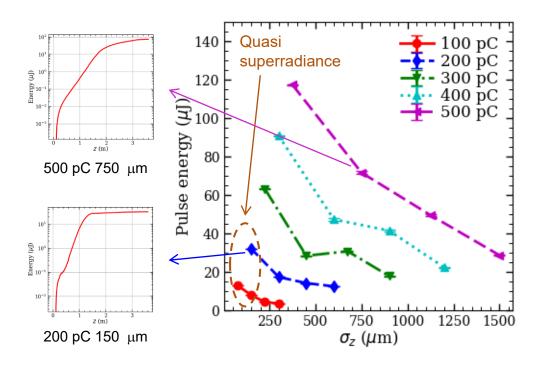
www.desy.de

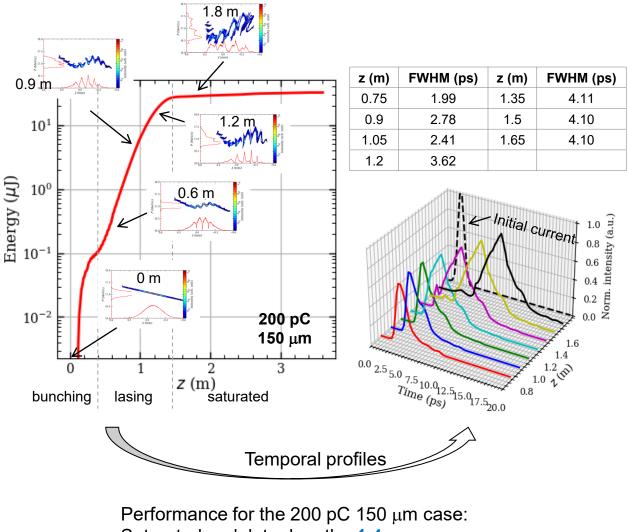
Sumaira Zeeshan PITZ, DESY sumaira.zeeshan@desy.de Tel : +49 33762 77494

Preliminary simulation of Terahertz superradiation generation at PITZ

Duo Xu Zeuthen, 27/06/2025

HELMHOLTZ


Parameter study for electron bunch at undulator entrance


with ideal 6D Gaussian distribution

Initial beam parameters:

α_{x}	10	β_x	17.5 m	E _{x,n}	2 μm
α_y	9.75	β_y	1.125 m	$\varepsilon_{y,n}$	2 μm
$\sigma_{E,cor}$	-85 keV	$\sigma_{E,uncor}$	8.5 keV	p_z	17 MeV/c

• The shortest rms bunch length was estimated according to previous studies of bunch compression at PITZ

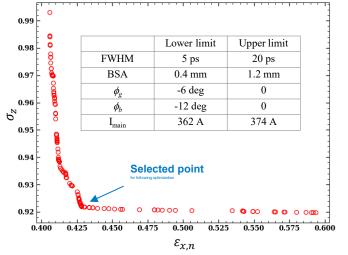
Saturated undulator length ~1.4 m Saturated energy ~30 μJ THz pulse FWHM 4.1 ps

S2E simulation for generating desired electron bunch

20

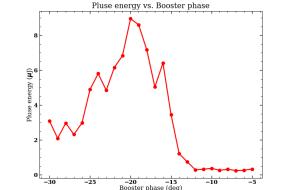
-600

-500

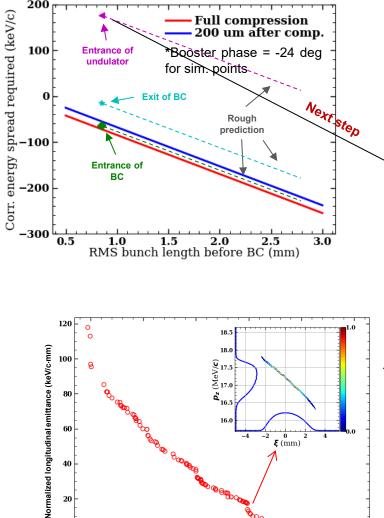

-400

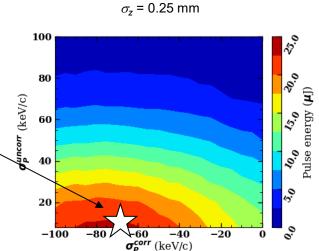
Correlated energy spread (keV/c)

-300


-200

-100




Optimized photoinjector parameters from minimizing bunch length and transversal emittance:

- FWHM = 5 ps
- BSA = 1.2 mm
- $\phi_{\alpha} = -5.73 \, \text{deg}$
- *I_{main}* = 366.02 A

Chirp flipped due to space charge effect -> bad FEL performance

Next steps for current PITZ facility:

- Increase laser length and optimize longitudinal phase space;
- 2. Relax requirement for target bunch length stepby-step;
- 3. Reduce charge.

Suggestions for ideal machine design:

- 1. Increase operating beam energy to weaken space charge effect;
- 2. Shorten drift space after BC to prevent chirp flipping.

Thank you

Contact

Deutsches Elektronen-	Duo
Synchrotron DESY	PITZ
	duo.

www.desy.de

Duo Xu PITZ group duo.xu@desy.de +49 33762/7-7494

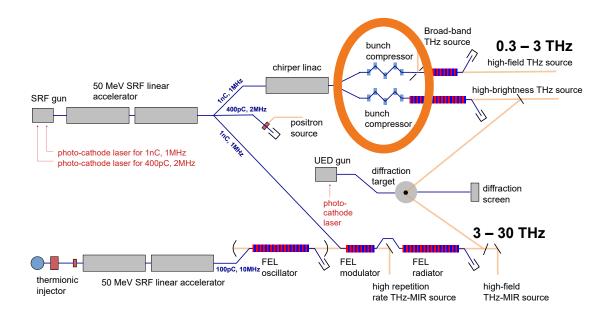
Nonlinear bunch compressors for DALI

Arthur Delan^{1,2}, U. Lehnert¹, A. Meseck², N. Mirian¹, R. Niemczyk¹, A. Wagner¹

¹ Helmholtz-Zentrum Dresden-Rossendorf, Institute of radiation physics, ELBE

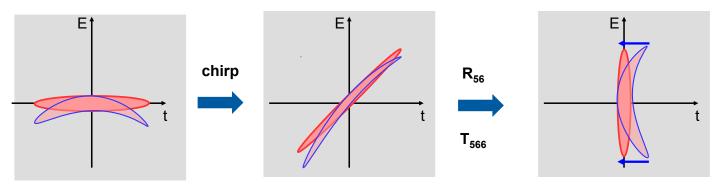
² Johannes Gutenberg-Universität Mainz, Institute for nuclear physics

27th June 2025, 13th MT ARD ST3 meeting Zeuthen, DESY

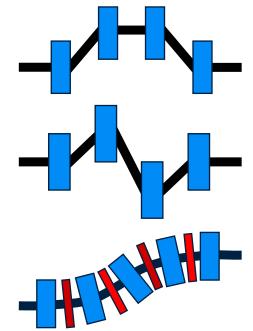

Dresden Advanced Light Infrastructure

Successor to ELBE,

- increased bunch charge,
- energy
- tunable repetition rate
- sophisticated MIR generation scheme


THz sources require short bunches for superradiant emission

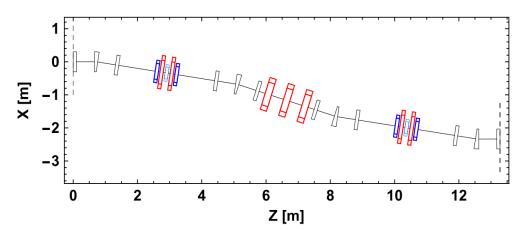
compression by > 40, possible due to low energy spread of SRF gun


Bunch compression

- imprint corelated energy spread on bunch
- use energy dependent path length to transform energy deviation R₅₆ into longitudinal shift
- limited by intrinsic energy spread and non-linearities in corelated energy spread
- use tailored higher order effects to compensate curvature

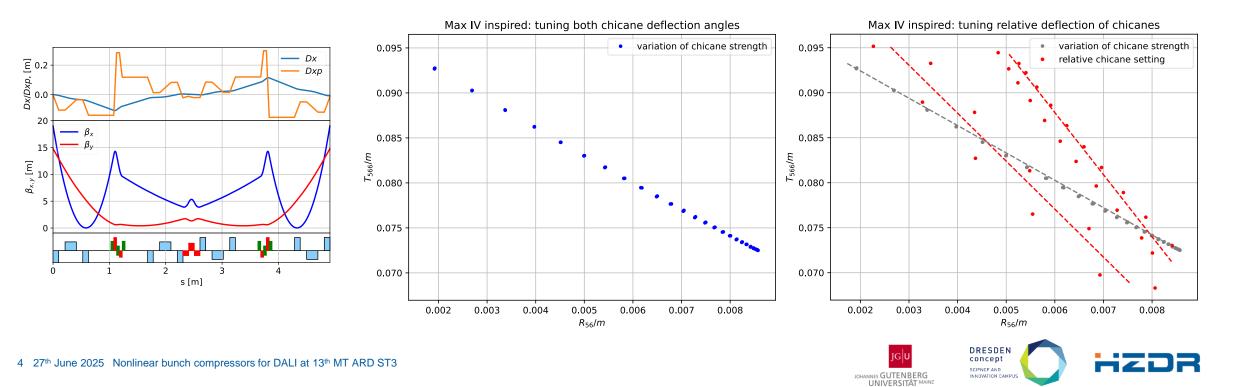
Structures to cause R₅₆:

- chicanes: $T_{566} \sim -1.5 R_{56}$
- arcs: T₅₆₆ ~ 2 R₅₆
- using quadrupoles and sextupoles: arbitrary



Checking options

multi bend achromat


plenty degrees of freedom allow for tuning of R_{56} and higher orders

limited footprint

Max IV layout of the inter storage ring bunch compressor black: dipoles, red: quadrupoles

DOI: 10.1103/PhysRevAccelBeams.23.100701

