Probing the dark matter halo with long-baseline optical cavities Using the ALPS II infrastructure to look for axions in the dark matter halo

Aaron D. Spector

FH Discussion

Axions in the Dark Matter Halo

Assumptions

Dark matter energy density: \bullet

•
$$\rho_{\rm a} = a_0^2 m_{\rm a}^2 / 2 \simeq 0.3 \, {\rm GeV/cm^3}$$

- Axion dark matter: $a(t) = a_0 \cos(m_a t + \delta_{\tau}(t))$ ullet
 - Dark matter local velocity: 10^{-3}
 - Coherence time:

•
$$\tau = \frac{2\pi}{m_{\rm a} v_{\rm a}^2} \sim 1 \left(\frac{10^{-16} \,\text{eV}}{m_{\rm a}} \right)$$
 year

DESY. APS | Probing the dark matter halo with long-baseline optical cavities | Aaron Spector | FH Particle Physics Discussion | September 11, 2023

Tools at our disposal (within the ALPS group)

- Long baseline cavities
 - Hall North: 245 m baseline
 - World record cavity storage time ullet
 - Hall West: 20 m baseline
 - Operate cavity with 100,000 finesse \bullet
 - Demonstrated pm length control \bullet
- Capable of shot noise limited detection in the \bullet MHz range

Phase velocity oscillation

Signal

- Axion field induces a circular birefringence in vacuum \bullet
 - Left vs. right handed circularly polarized states experience different phase velocity ullet

•
$$c_{L/R}^2 = 1 \mp \frac{g_{a\gamma\gamma}\dot{a}}{k} \rightarrow c_{L/R} \simeq 1 \mp \frac{g_{a\gamma\gamma}\dot{a}}{2k}$$

Phase oscillation over propagation length L: ullet

•
$$\phi_{\mathrm{L/R}}(t) = kL \mp \frac{g_{a\gamma\gamma}}{2} \int_{t-L}^{t} \dot{a}(t') dt' \rightarrow \phi_{\mathrm{L/R}}(t) = kL \mp \frac{g_{a\gamma\gamma}}{2} \{a(t) - a(t-L)\}$$

Axion induced polarization rotation

Signal

Relative phase oscillation between circularly polarized fields leads to polarization rotation: ullet

$$\theta(t) = \frac{\phi_{\rm R}(t) - \phi_{\rm L}(t)}{2}$$

Polarization state of linearly polarized fields: ullet

•
$$\theta(t) = \frac{g_{a\gamma\gamma}\sqrt{2\rho_a}}{m_a} \sin\left(\frac{m_a L}{2}\right) \sin\left(m_a t + \delta_\tau(t) - \frac{m_a L}{2}\right)$$

Projections for Gravitational Wave Interferometers

Idea pursued by Nagano et al for current/future GW observatories

PHYSICAL REVIEW D 104, 062008 (2021)

Axion dark matter search using arm cavity transmitted beams of gravitational wave detectors

Koji Nagano[®],¹ Hiromasa Nakatsuka[®],² Soichiro Morisaki[®],³ Tomohiro Fujita[®],^{4,5} Yuta Michimura[®],^{6,7} and Ippei Obata[®]

PHYSICAL REVIEW LETTERS 123, 111301 (2019)

Axion Dark Matter Search with Interferometric Gravitational Wave Detectors

Koji Nagano⁽³⁾,¹ Tomohiro Fujita,^{2,3} Yuta Michimura,⁴ and Ippei Obata¹

	$L_{ m cav}$	P_0	λ	
Similar detector	[m]	[W]	[×10 ⁻⁹ m]	(t_1^2, t_2^2) [ppm]
KAGRA [41]	3×10^{3}	335	1064	$(4 \times 10^3, 7)$
aLIGO [39]	4×10^3	2600	1064	$(1.4 \times 10^4, 5)$
CE [43]	4×10^4	600	1550	$(1.2 \times 10^3, 5)$
DECIGO [44]	106	5	515	$(3.1 \times 10^5,$
				3.1×10^5)

Accumulation of polarization rotation

Polarization rotation

$$\theta(t) = \frac{g_{a\gamma\gamma}\sqrt{2\rho_{a}}}{m_{a}} \sin\left(\frac{m_{a}L}{2}\right) \sin\left(m_{a}t + \delta_{\tau}(t)\right)$$

• If
$$m_a L \ll 1$$
:

•
$$\theta(t) = g_{a\gamma\gamma}L\sqrt{\frac{\rho_a}{2}}\sin\left(m_at - \frac{m_aL}{2}\right)$$

• So amplitude of the oscillation is $g_{a\gamma\gamma}L\sqrt{\frac{\rho_a}{2}}$ • For L = 245 m, $g_{a\gamma\gamma} = 2 \times 10^{-10}$ GeV⁻¹, $\rho_a = 0.3$

DESY. APS | Probing the dark matter halo with long-baseline optical cavities | Aaron Spector | FH Particle Physics Discussion | September 11, 2023

 $(t) - \frac{m_{\rm a}L}{2}$

For L = 245 m, g_{ayy} = 2×10⁻¹⁰ GeV⁻¹, ρ_a = 0.3 GeV/cm³, the amplitude is ~10⁻¹³

Accumulation of polarization rotation

Polarization rotation

$$\theta(t) = \frac{g_{a\gamma\gamma}\sqrt{2\rho_a}}{m_a} \sin\left(\frac{m_a L}{2}\right) \sin\left(\frac{m_a t + \delta_\tau(t)}{2}\right)$$

• If
$$m_a L = 2N\pi$$
 for $N = 1, 2, 3...$

•
$$\theta(t) = 0$$

The oscillation in the phase velocity perfectly cancels itself \bullet

DESY. APS | Probing the dark matter halo with long-baseline optical cavities | Aaron Spector | FH Particle Physics Discussion | September 11, 2023

 $L(t) - \frac{m_{\rm a}L}{2}$

Accumulation of polarization rotation

Polarization rotation

$$\theta(t) = \frac{g_{a\gamma\gamma}\sqrt{2\rho_a}}{m_a} \sin\left(\frac{m_a L}{2}\right) \sin\left(\frac{m_a t + \delta_\tau(t)}{2}\right)$$

• If
$$m_a L = (2N+1)\pi$$
 for

$$N = 0, 1, 2...$$

Amplitude of the oscillation is •

$$\frac{g_{a\gamma\gamma}L\sqrt{2\rho_{\rm a}}}{(2N+1)\pi}$$

$$m_{\rm a}L=\pi$$

 $_{a}(t)-\frac{m_{a}L}{2}$

Signal projection

Polarization rotation

- $L = 245 \, m$ ullet
- $g_{ayy} = 2 \times 10^{-10} \text{ GeV}^{-1}$ •
- $\rho_a = 0.3 \, \text{GeV/cm}^3$

Single pass laser setup

- Measure polarization noise from laser propagating over long baseline \bullet
- Filter DC power with polarization optics to only measure modulation ullet

Pushing the sensitivity with precision interferometry

Sensitivity

- Calculate the power spectral density of measured data ullet
- If shot noise limited SNR: \bullet

$$\frac{\sqrt{T_{\rm obs}}}{2\sqrt{S_{\rm shot}(m)}}\delta c_0 \quad (T_{\rm obs} \lesssim \tau_{\rm a})$$

Sensitivity to g_{ayy} (SNR = 1, $T_{obs} \gg \tau_a$) ullet

•
$$g_{a\gamma\gamma}(m_{\rm a}) = 2 \times 10^{-8} \,\mathrm{GeV}^{-1} \left(\frac{m_{\rm a}}{2.5 \,\mathrm{neV}}\right)^{5/4} \left(\frac{1 \,\mathrm{W}}{P_0} \frac{1064 \,\mathrm{nm}}{\lambda}\right)^{1/2} \left(\frac{1 \,\mathrm{day}}{T_{\rm obs}}\right)^{1/4} \left|\sin\left(\frac{m_{\rm a}L}{2}\right)\right|^{-1}$$

$$\frac{(T_{\rm obs}\tau_{\rm a})^{1/4}}{2\sqrt{S_{\rm shot}(m)}}\delta c_0 \quad (T_{\rm obs}\gtrsim\tau_{\rm a})$$

11

Sensitivity

Sensitivity to
$$g_{a\gamma\gamma}$$
 (SNR = 1, $T_{obs} \gg \tau_a$, $m_a L \ll 1$)
• $g_{a\gamma\gamma}(m_a) \simeq 1 \times 10^{-8} \,\text{GeV}^{-1} \left(\frac{m_a}{2.5 \,\text{neV}}\right)^{1/4} \left(\frac{245 \,\text{m}}{L}\right) \left(\frac{1 \,\text{W}}{P_0} \frac{1064 \,\text{nm}}{\lambda}\right)^{1/2} \left(\frac{1 \,\text{day}}{T_{obs}}\right)^{1/4}$
Sensitivity to $g_{a\gamma\gamma}$ (SNR = 1, $T_{obs} \gg \tau_a$, $m_a L = \pi$)
• $g_{a\gamma\gamma}(m_a) = 2 \times 10^{-8} \,\text{GeV}^{-1} \left(\frac{245 \,\text{m}}{L}\right)^{5/4} \left(\frac{1 \,\text{W}}{P_0} \frac{1064 \,\text{nm}}{\lambda}\right)^{1/2} \left(\frac{1 \,\text{day}}{T_{obs}}\right)^{1/4}$

Sensitivity to
$$g_{a\gamma\gamma}$$
 (SNR = 1, $T_{obs} \gg \tau_a$, $m_a L \ll 1$)
• $g_{a\gamma\gamma}(m_a) \simeq 1 \times 10^{-8} \,\text{GeV}^{-1} \left(\frac{m_a}{2.5 \,\text{neV}}\right)^{1/4} \left(\frac{245 \,\text{m}}{L}\right) \left(\frac{1 \,\text{W}}{P_0} \frac{1064 \,\text{nm}}{\lambda}\right)^{1/2} \left(\frac{1 \,\text{day}}{T_{obs}}\right)^{1/4}$
Sensitivity to $g_{a\gamma\gamma}$ (SNR = 1, $T_{obs} \gg \tau_a$, $m_a L = \pi$)
• $g_{a\gamma\gamma}(m_a) = 2 \times 10^{-8} \,\text{GeV}^{-1} \left(\frac{245 \,\text{m}}{L}\right)^{5/4} \left(\frac{1 \,\text{W}}{P_0} \frac{1064 \,\text{nm}}{\lambda}\right)^{1/2} \left(\frac{1 \,\text{day}}{T_{obs}}\right)^{1/4}$

Projecting the sensitivity

Sensitivity

- P = 2 Wullet
- 1 day observation time lacksquare
- 1064 nm wavelength ullet

Boosting signal with optical cavity

- Each pass incurs polarization modulation ullet
 - Coherent build up of polarization modulation for empty cavity when: \bullet $m_{a}L = \pi(2N+1)$ for N = 0, 1, 2...

Boosting signal with optical cavity

- Each pass incurs polarization modulation ullet
 - lacksquare

Problem: no low mass sensitivity, incoming rotation cancels outgoing rotation, upon reflection

Boosting signal with optical cavity

- Each pass incurs polarization modulation ullet
 - Coherent build up of polarization modulation for empty cavity when: \bullet $m_{a}L = \pi(2N+1)$ for N = 0, 1, 2...
 - Polarization rotation enhanced by the finesse of the cavity \bullet

$$\theta(t) = 2 \frac{g_{a\gamma\gamma} \sqrt{2\rho_a}}{m_a} \beta(m_a L) \sin^2\left(\frac{m_a L}{2}\right) \sin\left(m_a t + \delta_\tau(t) - \frac{m_a L}{2}\right)$$

•
$$\beta(m_{a}L) = \left| \frac{t_{1}t_{2}}{1 - r_{1}r_{2}} \frac{r_{1}r_{2}}{1 - r_{1}r_{2}e^{-i2m_{a}L}} \right|$$

with
$$\beta(N\pi) = \beta_0 \simeq \frac{4t_1t_2}{\left(t_1^2 + t_2^2 + l^2\right)^2}$$

Boosting signal with optical cavity

- Each pass incurs polarization modulation \bullet
 - Coherent build up of polarization modulation for empty cavity when: ullet $m_{a}L = \pi(2N+1)$ for N = 0, 1, 2...
 - Polarization rotation enhanced by the finesse of the cavity \bullet
- Sensitivity to q_{avv} (SNR = 1, $T_{obc} \gg \tau_a$, $m_o L = \pi$) ullet

•
$$g_{a\gamma\gamma}(m_{\rm a}) = 2.5 \times 10^{-13} \,\mathrm{GeV}^{-1} \left(\frac{245 \,\mathrm{m}}{L}\right)^{5/4} \left(\frac{\beta_0}{40,000}\right) \left(\frac{1 \,\mathrm{W}}{P_0} \frac{1064 \,\mathrm{nm}}{\lambda}\right)^{1/2} \left(\frac{1 \,\mathrm{day}}{T_{\rm obs}}\right)^{1/4}$$

Sensitivity using a cavity

Optical Cavity vs Single Pass Cavity likely limited to 150 kW Input power limited to 40 W Regions exist where single pass is more sensitive than the optical cavity (under these constraints)

lacksquare

lacksquare

Additional Challenges

Challenges

- Requires pm absolute length stability of the cavity ullet
 - Relative length control demonstrated in ALPS II with pm precision ●
 - Must demonstrate absolute length sensing ullet

Probing low mass axions

Other cavity configurations

- Cavity with QWPs at each end ullet
 - Ideal case: \bullet
 - Signal amplified for the 0-th order resonance (no other resonances amplified) \bullet

$$\theta(t) = 2 \frac{g_{a\gamma\gamma}\sqrt{2\rho_{\rm a}}}{m_{\rm a}} \beta(m_{\rm a}L) \sin\left(m_{\rm a}L\right) \sin\left(m_{\rm a}t + \delta_{\tau}(t) - \frac{m_{\rm a}L}{2}\right)$$

Probing low mass axions

Axion halo search potential at DESY using ALPS Cavities

10⁻¹²

Axion parameter space

DESY. APS | Probing the dark matter halo with long-baseline optical cavities | Aaron Spector | FH Particle Physics Discussion | September 11, 2023

From Ciaran O'Hare: https://cajohare.github.io/AxionLimits/

Axion parameter space

From Ciaran O'Hare: https://cajohare.github.io/AxionLimits/

Applying new technologies

How to tune the resonances with respect to the axion mass

- 245 m cavities \sim 3 m of length tuning range (3% of the space between 1st and 2nd resonances) \bullet
 - Tuning by varying cavity FSR has limited range, not efficient
- Changing orientation of QWPs, different resonance for orthogonal polarization states \bullet
 - Not likely possible with high-finesse cavities
- Folding mirror setup

Conclusions

We can search for axions in the dark matter halo using the optical cavities we built for ALPS II!

- Polarization modulation induced by axions would be a measurable signal ullet
- Realistic to achieve sensitivities beyond the CAST limit with technology demonstrated at DESY •
 - Mass range between 10^{-12} eV and 10^{-9} eV
 - Sensitivities down to $g_{a\gamma\gamma} > 10^{-13}$
- Tuning to fill the gaps between resonances is more complicated but we have some ideas lacksquare

Infrastructure at DESY

Providing the foundation for experiments with precision interferometry

Infrastructure at DESY

Providing the foundation for experiments with precision interferometry

Infrastructure at DESY **Providing the foundation for experiments with precision interferometry**

Accumulation of polarization rotation Pushing the sensitivity with precision interferometry

Polarization rotation

•
$$\theta(t) = \frac{2\Delta\theta}{m_{\rm a}} \sin\left(\frac{m_{\rm a}L}{2}\right) \sin\left(m_{\rm a}t - \frac{m_{\rm a}L}{2}\right)$$

- If $m_a L$ is of order 1 or greater
 - Polarization rotation can cancel itself

Pushing the sensitivity with precision interferometry

Double pass laser setup

- Try to double baseline by reflecting back from a mirror, use QWP to filter DC power \bullet
- Problem: relative inversion between s and p polarized states upon reflection ullet

Pushing the sensitivity with precision interferometry

Double pass laser setup

- Try to double baseline by reflecting back from a mirror, use QWP to filter DC power \bullet
- Problem: relative inversion between s and p polarized states upon reflection ullet
 - Response: \bullet

•
$$\theta(t) = 2 \frac{g_{a\gamma\gamma} \sqrt{2\rho_a}}{m_a} \sin^2\left(\frac{m_a L}{2}\right) \sin\left(m_a t + \delta_\tau(t) - \frac{m_a L}{2}\right)$$

Pushing the sensitivity with precision interferometry

Double pass laser setup with QWP

- Solution: change position of QWP to just before mirror \bullet
 - Leads to coherent sum of polarization modulation before and after reflection lacksquare
 - Response:

•
$$\theta(t) = \frac{g_{a\gamma\gamma}\sqrt{2\rho_a}}{m_a}\sin\left(m_aL\right)\sin\left(m_at + \delta\right)$$

Pushing the sensitivity with precision interferometry

Comparing setups

Response: ullet

Pushing the sensitivity with precision interferometry

Comparing setups

	Low mass resp.	Peak sens.	Peak locations	Zero location
Single Pass	$\Delta \theta L$	$2\Delta\theta/m_{\rm a}$	$m_{\rm a}L = (2N+1)\pi$	$m_{\rm a}L = 2N\pi$
Double Pass	none	$4\Delta\theta/m_{\rm a}$	$m_{\rm a}L = (2N+1)\pi$	$m_{\rm a}L = 2N\pi$
Double QWP Pass	$2\Delta\theta L$	$2\Delta\theta/m_{\rm a}$	$m_{\rm a}L = (N+1/2)\pi$	$m_{\rm a}L = N\pi$
			(N = 0, 1, 2,)	

DESY. APS | Probing the dark matter halo with long-baseline optical cavities | Aaron Spector | FH Particle Physics Discussion | September 11, 2023

QWP

Pushing the sensitivity with precision interferometry

Comparing setups

Response: ullet

Pushing the sensitivity with precision interferometry

Boosting signal with optical cavity

- Each pass incurs polarization modulation ullet
 - Empty cavity insensitive when $m_a L = 2\pi N$ for N = 0, 1, 2...
 - Peak sensitivity when $m_a L = \pi (2N + 1)$ for N = 0, 1, 2...
 - Response:

•
$$\theta(t) = \frac{4\Delta\theta}{m_{\rm a}} \sin\left(\frac{mL}{2}\right) \cos\left(\frac{mL}{2}\right) \sin\left(mt - mL\right) = \frac{2\Delta\theta}{m_{\rm a}} \sin\left(m_{\rm a}L\right) \sin\left(mt - mL\right)$$

For $mL \ll 1$ amplitude of polarization modulation $\simeq 2\Delta\theta L$ ●

Optical cavity loss per unit length Learning from gravitational wave interferometers and VMB experiments

plot from LIGO T-1400226-v6

Using Fabry-Perot Cavities Utilizing the ALPS II infrastructure

Boosting signal with optical cavity

- Each pass incurs polarization modulation \bullet
 - Coherent build up of polarization modulation for empty cavity when: $m_{a}L = \pi(2N+1)$ for N = 0, 1, 2...
 - Polarization rotation enhanced by the finesse of the cavity
 - On 245 m baseline $\beta_0 = 40,000$ is possible
 - Requires pm length stability of the cavity (demonstrated in ALPS II) \bullet

Using Fabry-Perot Cavities Utilizing the ALPS II infrastructure

Optical Cavity narrow band vs wide band

Using Fabry-Perot Cavities Utilizing the ALPS II infrastructure

Boosting signal with optical cavity

Probing low mass axions Utilizing the ALPS II infrastructure

Other cavity configurations

Cavity with QWPs at each end ullet

Probing low mass axions Utilizing the ALPS II infrastructure

Other cavity configurations

- Cavity with QWPs at each end ullet
 - Ideal case:
 - \bullet
 - Signal is only amplified for the 0-th order resonance \bullet
 - Challenges \bullet
 - Operating with QWPs inside a cavity

If there is a non-zero integer number of wavelengths the polarization modulation cancels itself

