Feasibility Study of H1 SPACAL for New Physics Searches at LUXE-NPOD

Marcus Mähring

The NPOD Project

- Downstream from main experiment
- Use Compton photons to induce Primakoff production: $\gamma + N \rightarrow N + X$
- Focus on ALPs but potentially also other U(1) mediators / "dark" particles
- Signal: two photos reconstructable to common vertex after the photon dump

arXiv:2107.13554v1

Current Goals of My Internship

- 1. Characterize signal from ALP decays
- 2. Build G4 simulation implementing ALPs with adjustable characteristics of ALPs
- the H1 SPACAL calorimeter could be used in PHASE 0 as a "drop in" alternative

3. From technical conditions imposed for background mitigation purposes: determine whether

4. Investigate other technologies to supplement or substitute the SPACAL if it's insufficient

- ALPs are (pseudo)scalars, meaning they decay isotropically in their rest frame
- At rest, cosine distribution of polar angles, delta distribution for energy. Smearing from boost.
- Simulation confirmed three different ways by taking π^0 as reference (MC, G4, G4beamline)

175 MeV parent with E kin = 0 MeV

- ALPs are (pseudo)scalars, meaning they decay isotropically in their rest frame
- At rest, cosine distribution of polar angles, delta distribution for energy. Smearing from boost.
- Simulation confirmed three different ways by taking π^0 as reference (MC, G4, G4beamline)

175 MeV parent with E kin = 500 MeV

- ALPs are (pseudo)scalars, meaning they decay isotropically in their rest frame
- At rest, cosine distribution of polar angles, delta distribution for energy. Smearing from boost.
- Simulation confirmed three different ways by taking π^0 as reference (MC, G4, G4beamline)

- ALPs are (pseudo)scalars, meaning they decay isotropically in their rest frame
- At rest, cosine distribution of polar angles, delta distribution for energy. Smearing from boost.
- Simulation confirmed three different ways by taking π^0 as reference (MC, G4, G4beamline)

The SPACAL

- Longitudinal depth $28X_0$
- Energy resolution: $\sigma_E = (7.1 \pm 0.2) \% / \sqrt{E[\text{GeV}]} \oplus (1 \pm 0.1) \%$

From Kolanoski, H., & Wermes, N. (2020). Particle Detectors: Fundamentals and Applications. Page 616

- SPACAL segmented into cells $(40.5 \times 40.5 \text{ mm}^2)$
- Collected into 2x1 submodules arranged in 4x4 supermodules

rφ view. Rectangles represent 2x1 cell submodules Appuhn, R-D., et al. "The H1 lead/scintillating-fibre calorimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 386.2-3 (1997)

- SPACAL segmented into cells $(40.5 \times 40.5 \text{ mm}^2)$
- Collected into 2x1 submodules arranged in 4x4 supermodules

rφ view. Rectangles represent 2x1 cell submodules Appuhn, R-D., et al. "The H1 lead/scintillating-fibre calorimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 386.2-3 (1997)

Resolution	Current	Potential	Wish list

Resolution	Current	Potential	Wish list
Energy	Good		~few %

Resolution	Current	Potential	Wish list
Energy	Good		~few %
Time	Decent (~400ps)	Not intrinsic! Better PMTs would lead to better time resolution	<i>(</i>) (10-100 ps)

Resolution	Current	Potential	Wish list
Energy	Good		~few %
Time	Decent (~400ps)	Not intrinsic! Better PMTs would lead to better time resolution	<i>(</i>) (10-100 ps)
Space	Bad (~4mm ±) / √E[GeV] + 1mm	No "easy" way to improve, could subdivide base cells	𝕖 (~100 µm)

Resolution	Current	Potential	Wish list
Energy	Good		~few %
Time	Decent (~400ps)	Not intrinsic! Better PMTs would lead to better time resolution	<i>(</i> 10-100 ps)
Space	Bad (~4mm ±) / √E[GeV] + 1mm	No "easy" way to improve, could subdivide base cells	𝕖 (~100 µm)
Angle	No longitudinal segmentation	Maybe we can say something anyway?	Ø (~100 mrad)

Current challenge: possible to get some angular resolution?

- Current challenge: possible to get some angular resolution?
- incoming photon angle

• Need way to reconstruct showers in events to collect summary statistics we can relate to

- Current challenge: possible to get some angular resolution? •
- incoming photon angle

• Need way to reconstruct showers in events to collect summary statistics we can relate to

- Current challenge: possible to get some angular resolution? •
- incoming photon angle

• Need way to reconstruct showers in events to collect summary statistics we can relate to

A Sampler: Some Energy Deposition Distributions

Misreconstructed events $(\times 10^2)$

From simulation of 1 GeV ALP with 500 MeV mass and a scale of 100 GeV

9

Summary

- Characterized / confirmed signal type •
- Completed backbone of simulation for ALPs with G4
- statistics from simulations
- technologies

Implementing analysis framework (some python classes) to streamline extraction of summary

Currently working on angular reconstruction and investigating alternative / supplementary

Next steps: Use more summary statistics and see if I can perform some smart fit to the incoming angle Try a CNN to extract a summary score / angle **BDT to combine summary statistics?** Improve shower recognition - "jet fitting" algorithm? Testing for bimodality?

Backup Slides

Lifetime of ALP

• Given by formulae:

$$-\Gamma = \frac{m_{a/\phi}^3}{64\pi\Lambda_{a/\phi}^2}$$
$$-\tau = \hbar/\Gamma$$

- Example: $m_{a/\phi} = 500$ GeV & $\Lambda_{a/\phi} = 100$ GeV, lifetime of 1e-5 ps...
- Not excludable at NPOD

Exclusions

Stragglers in Angular Distributions

• Comes from the fact that we can't boost with the speed of light

- *not* change the sign of their momentum
- Leads to large angles still represented, even₄ for large boosts lacksquare

Parent mass: 135 MeV

• For all boost velocities, there is a cutoff angle after which photons decayed at this angle will

Simulation Comparisons

E kin = 5 GeV for 135.0 MeV parent

- SPACAL segmented into cells $(40.5 \times 40.5 \text{ mm}^2)$
- Collected into 2x1 submodules arranged in 4x4 supermodules

rφ view. Rectangles represent 2x1 cell submodules Appuhn, R-D., et al. "The H1 lead/scintillating-fibre calorimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 386.2-3 (1997)

- SPACAL segmented into cells $(40.5 \times 40.5 \text{ mm}^2)$
- Collected into 2x1 submodules arranged in 4x4 supermodules

rφ view. Rectangles represent 2x1 cell submodules Appuhn, R-D., et al. "The H1 lead/scintillating-fibre calorimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 386.2-3 (1997)

- SPACAL segmented into cells $(40.5 \times 40.5 \text{ mm}^2)$
- Collected into 2x1 submodules arranged in 4x4 supermodules

rφ view. Rectangles represent 2x1 cell submodules Appuhn, R-D., et al. "The H1 lead/scintillating-fibre calorimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 386.2-3 (1997)

- SPACAL segmented into cells $(40.5 \times 40.5 \text{ mm}^2)$
- Collected into 2x1 submodules arranged in 4x4 supermodules

rφ view. Rectangles represent 2x1 cell submodules Appuhn, R-D., et al. "The H1 lead/scintillating-fibre calorimeter." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 386.2-3 (1997)

Technical Challenges for Better Position Resolution

- Wires not inside lead itself, but inside milled "notches".
- Scintillating wires affixed by pressing
- Makes subdivision beyond singular cells difficult...

Figure 4: Cross section of two lead plates.

