Track reconstruction of charged particles using a 4D quantum algorithm

Federico Meloni¹, **David Spataro^{1,2}**, Yee Chinn Yap¹

¹ Deutsches Elektronen-Synchrotron DESY ² Albert-Ludwigs-Universität Freiburg

EPS-HEP 2023, Hamburg 25/8/2023

david.spataro@desy.de HELMHOLTZ

Track reconstruction

Reconstruct full events:

- Measuring particle energy
- Determine particle type
- Projection to/through other detector parts
- Identify/reconstruct secondary decays

Source: TrackML Challenge https://www.kaggle.com/competitions/trackml-particle-identification/overview/description

... but can become computationally very costly!

Pattern recognition for tracking

• Triplets as elementary patterns

Pattern recognition for tracking

- Triplets as elementary patterns
- Interactions between triplets

Goal:

Identify triplets stemming from a single particle

 \rightarrow build tracks from kept triplets

Pattern recognition for tracking

- Triplets as elementary patterns
- Interactions between triplets

QUBO Quadratic Unconstrained Binary Optimisation

$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$

- **T**_i ∈ {0, 1}
- \mathbf{b}_{ij} : interaction
- **a**_i : quality

QUBO Quadratic Unconstrained Binary Optimisation

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

Minimise Hamiltonian cost function:

- $\mathbf{v}_{\text{binary}}$: $[T_1, T_2, T_3, \dots, T_N] \rightarrow [0, 1, 1, \dots, 0]$ as result
- Ground state = best set of triplets

Computation:

- Matrix diagonalisation (analytic solution)
- Hybrid quantum-classical algorithm

QUBO

Quadratic Unconstrained Binary Optimisation

- Matrix diagonalisation (analytic solution)
- Hybrid quantum-classical algorithm

VQE - Variational Quantum Eigensolver

Sub-QUBOs

Source: https://arxiv.org/pdf/2304.01690.pdf

Timing information used for particle tracking

- Purpose: Reduce background and sharpening resolution
- Planned Phase-2 upgrade ATLAS(HGTD)/CMS(MIP):

Timing layers in forward directions to reduce pileup background

Timing information used for particle tracking

- Purpose: Reduce background and sharpening resolution
- Planned Phase-2 upgrade ATLAS(HGTD)/CMS(MIP):

Timing layers in forward directions to reduce pileup background

• Next generation of detectors will (probably) have time

information in every layer

Pattern recognition in Muon Colliders

Beam muons decays induce secondary particle showers that reach the detector

(Beam-Induced-Background)

Time information as a crucial component to suppress BIB particles

4D tracking with QUBO:

Include time information directly into pattern recognition

4D QUBO

Interaction b_{ij, total}:

- curvature
- scattering
- time

 \rightarrow 4D modeling of interactions

Time component of b_{ii}

DESY.

Page 17

300

350

300

signal

background

350

 σ_t [ps]

Single muon tracks within a large BIB

Setup

- Single muon events overlaid with BIB
- Focus on barrel region
- O(10⁶) background hits
- $\theta = 90^{\circ}, \phi \in [0, 2\pi]$
- Pattern building (doublets) only from consecutive layers

Preselection

Pre-selection

• **Doublet** pre-selection on $\Delta \theta$ and $\Delta \phi$

Preselection

Pre-selection

- **Doublet** pre-selection on $\Delta \theta$ and $\Delta \phi$
- Triplet pre-selection on trajectories having a small |d₀| w.r.t. the IP

Efficiency vs. p_{T}

Pattern recognition

 Pattern building in a θ-slice around muon track

- At least 6 hits
- Mostly signal hits

Integrated efficiency vs. sub-QUBO size

- Adding time information improves efficiency at bigger sub-QUBO sizes
- VQE ≈ Analytical
 - \rightarrow needs some tuning

A 4D tracking approach using a QUBO formulation was presented
→ QUBO parameters consist of a combination of spatial and temporal information of the detector hits

• Results are shown for the barrel region of the Muon Collider, future work aims at extending the approach to the whole tracker region

 Adding time information to the QUBO parameters b_{ij} may improve the track reconstruction efficiency, especially at low p

Thank You!

- Performance vs θ , additionally including endcap regions
- Optimise QUBO parameter modelling, e.g. weighting of time/spatial parts
- Optimise track selection and fitting, e.g. number of hits required: χ^2 , p_{τ} reconstruction...
- Number of fake tracks per event before / after χ^2

Muon Collider

Why Muon Colliders?

- Muons are heavier than electrons
 - \rightarrow higher energy reach, less synchrotron radiation,
- Higgs precision measurements
- Complementary research on pp and e⁺e⁻ colliders

Source: https://muoncollider.web.cern.ch

Appendix: QUBO parameter settings

Trivial

- -1 if connection possible compatible curvature: c=1 contrary curvature: c=2
- $f(q/p_T): 0.5 \cdot (c min([pT_{triplet 1} pT_{triplet 2}]) / max([pT_{triplet 1} pT_{triplet 2}])) \rightarrow [0, 1]$
- $max(\Delta\theta / 0.01) \rightarrow [0, 1]$
- average of both is spatial value

Temporal

• $min(\sigma(t_{hits}) / 250 \text{ [ps] }, 1) \rightarrow \text{[0, 1]}$

Connections are rescaled to be inside **[-1.0, -0.9]**

Appendix: Signal only - φ

Appendix: Signal only - θ

Appendix: Signal only - p_{T}

Appendix: Signal only - energy

Appendix: Signal only - $\Delta \phi$

Appendix: Signal only - $\Delta \theta$

Appendix: Signal only - d₀

Appendix: Signal only - t_{hits}

t - tof_{photon}

Appendix: Signal only - µ(t_{hits, triplet})

t - tof_{curvature}

Appendix: Signal only - σ(t_{hits, triplets})

t - tof_{photon}

t - tof_{curvature}

Appendix: Signal only - doublet pre-selection

Appendix: Signal only - triplet pre-selection

Appendix: QUBO-coefficients - curvature

Appendix: QUBO-coefficients - $max(\Delta \theta)$

Appendix: QUBO-coefficients - σ(t_{hits, qudruplet})

t - tof_{photon}

t - tof_{curvature}

Appendix: Preselection values

VXD:	Δφ = 0.05	$\Delta \theta = 0.01$	d0 = 15mm
ITracker:	Δφ = 0.2	Δθ = 0.01	d0 = 50mm
OTracker:	Δφ = 0.25	Δθ = 0.005	d0 = 50mm

Appendix: Triplet statistics

```
N<sub>events</sub> = 538,
```

 $\mathrm{N_{triplets}}$ = 15087781 \rightarrow 28044 / event

N _{triplets, signal}	= 5048	\rightarrow 9	/ event
N _{triplets, majority signal}	= 40137	$\rightarrow 75$	/ event
N _{triplets, majority background}	= 278561	→ 518	/ event
N _{background}	= 14764025	$\rightarrow 27442$	/ event

Reconstruction mode

 Pattern building in a θ-slice around muon track

- At least 6 hits in a row
- Matched if majority of hits from signal else fake

Reconstruction mode

 Pattern building in a θ-slice around muon track

- At least 6 hits in a row
- Matched if majority of hits from signal else fake

Reconstruction mode

 Pattern building in a θ-slice around muon track

- At least 6 hits in a row
- Matched if majority of hits from signal else fake

Not finished plots and not understood results

Appendix: χ² - before final track selection

spatial + temporal

spatial