
Automate the boring stuff with
CI/CD
Subtitle of Presentation

Jakob van Santen

Zeuthen, 2023-12-12

DESY. 2

Continuous Integration/Continuous Delivery
word words

• Integration: make changes [without breaking
things]

• Delivery: publish a version (source code,
installable packages, whatever)

• Continuous: do it on demand, with as little
human intervention as possible

• Integrated dev platforms like GitHub and GitLab
have great tools for CI/CD

• Applications for code-writing scientists:

• Quality control

• Packaging

• Dependency management
https://www.pagerduty.com/resources/learn/what-is-continuous-integration/

DESY. 3

Disclaimers

My assumptions about you

• You use an integrated development platform like
GitHub or [DESY] GitLab

• You know what a pull request/merge request is

• You write code, mostly in Python

• You are not a software engineer

• You may have seen a CI pipeline, but have never
written one yourself

I will cover

• Why you should automate quality control,
packaging, and dependency management

• Useful tools

• Examples

• Good practices

I will not cover

• How to write good tests & testable code

DESY. 4

A minimal CI workflow
"Run my tests every time I push"

GitHub Actions GitLab CI/CD

.github/workflows/whatever.yml .gitlab-ci.yml

image: "python:3.10"

test:

 script:

 - pip install poetry

 - poetry install

 - poetry run pytest

on:

 - push

jobs:

 test:

 runs-on: "ubuntu-22.04"

 steps:

 - uses: actions/checkout@v3

 - uses: actions/setup-python@v4

 with:

 python-version: '3.10'

 - run: |

 python -m pip install poetry

 poetry install

 - run: poetry run pytest

Can add more complexity:

• Run only on certain branches, PRs, etc

• Multiple jobs that depend on each other

• Conditional jobs

• Sidecar services (databases, etc)

• Caching

https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions
https://github.com/jvansanten/automatic-couscous/blob/e9bca10648cb26de268f712e035c7fade6b55d22/.github/workflows/main.yml
https://gitlab.desy.de/jakob.van.santen/poetry-ci-example/-/blob/b8bb6f68c2f0a235c0554633ae669ea3d5b505c9/.gitlab-ci.yml

DESY. 5

Boring thing 1: quality control
"Code" vs "software"

• Code is the thing you write

• Software is made from code, plus

1. Some assurance that it behaves as advertised

2. A version

3. Documentation 😂

• Quality control alerts you when something breaks (1)

• Can be:

• Something you or a contributor changed

• One of your dependencies changed

DESY. 6

Useful tools for Python quality control

• Formatters: make diffs smaller

• black: a good standard style

• isort: keep your imports organized

• Linters: find common mistakes by just looking at the
code

• flake8: bundle of popular checks

• ruff: like black+isort+flake8+plugins, but faster

• Static type checkers: find type errors without
running the code

• mypy: the original Python type checker

• pyright: stricter than mypy, part of VSCode

• Test frameworks: simplify writing, discovering,
running tests

• pytest: compact, reusable, plugins for
everything

• unittest: comes with Python

• Virtualenv managers: simplify specifying &
installing dependencies

• poetry: versioning, packaging, dependency
management

• pipenv: just dependency management

• pdm: if you want everything to work like node.js

• conda-lock: reproducible conda environments

https://black.readthedocs.io/en/stable/
https://pycqa.github.io/isort/
https://flake8.pycqa.org/en/latest/
https://docs.astral.sh/ruff/
https://mypy-lang.org
https://microsoft.github.io/pyright/#/
https://docs.pytest.org
https://docs.pytest.org/en/stable/reference/plugin_list.html
https://docs.pytest.org/en/stable/reference/plugin_list.html
https://docs.python.org/3/library/unittest.html
https://python-poetry.org
https://pipenv.pypa.io
https://pdm-project.org
https://conda.github.io/conda-lock/

DESY. 7

Examples

Minimal install & test

(GitHub Actions)

Minimal install & test

(GitLab CI)

Real-world install, lint & test

(GitHub Actions)

https://github.com/jvansanten/automatic-couscous/actions/runs/7166081833/job/19509347722
https://gitlab.desy.de/jakob.van.santen/poetry-ci-example/-/jobs/329143
https://github.com/AmpelProject/Ampel-core/actions/runs/6889083801

DESY. 8

Good practices for quality control

• Decide how much quality control you want and when, e.g.

• main branch always works

• main branch may be broken, but releases will work

• "It worked for me; use at your own risk"

• Start with a minimal set of checks, add new ones
whenever you fix something

• Ensure your checks depend only on the contents of the
commit

• Require checks before merging changes into a stable
branch

• Avoid pushing directly to stable branches

https://xkcd.com/1205

DESY. 9

Boring thing 2: publishing packages
Be kind to your non-developer users

• Tag versions as you add features or fix bugs

• Publish a package for each release tag (e.g. v*)

• "pip install X=3.2" is nicer than "check out 632b0d5e"

• Automation can remove you as a single point of failure:
anyone who can create a tag can release a new package

• Useful tools

• poetry: versioning, packaging, dependency
management

• flit: package & publish to PyPI

• twine: just publish to PyPI

• cibuildwheel: build for multiple Python/OS/arch
combinations

https://medium.com/@butteredwaffles/python-packages-and-modules-
explained-part-1-ff304c4f19dd

https://python-poetry.org
https://flit.pypa.io
https://twine.readthedocs.io
https://cibuildwheel.readthedocs.io

DESY. 10

Examples

Publish to PyPI (example)

(GitHub Actions)

Push to GitLab container registry

(GitLab CI)

https://github.com/AmpelProject/Ampel-core/blob/e0780bf62132be205234e66240ca763ec81fcfb0/.github/workflows/main.yml#L132-L153
https://github.com/AmpelProject/Ampel-core/actions/runs/6889083801
https://gitlab.desy.de/jakob.van.santen/kaniko-demo/-/blob/608c76ad2f994e822ac60af5c396bfd70c2cebf8/.gitlab-ci.yml

DESY. 11

Good practices for packaging

• Provide a (prebuilt!) package

• [aspire to] use Semantic Versioning (major.minor.patch)
wherever possible

• Patch: only bug fixes, no interface changes

• Minor: add new interfaces

• Major: anything can happen

• Set upper bounds on the versions of your dependencies
where appropriate

• Run tests before publishing

• Do not check package repository credentials into git

• Use secrets in GitHub Actions

• Use (masked, protected) CI variables in GitLab CI
Much package, such discoverable

https://semver.org
https://iscinumpy.dev/post/bound-version-constraints/
https://docs.github.com/en/actions/security-guides/using-secrets-in-github-actions
https://docs.gitlab.com/ee/ci/variables/index.html#mask-a-cicd-variable
http://www.apple.com

DESY. 12

Boring thing 3: managing dependency versions
You're not the only one who can break your software

• Your software likely depends on libraries, and can break when
they change

• Solutions:

• Depend on exact versions, and never change them

• Depend on a range of versions, updating as new versions
are released and tested

• Dependency managers exist to automate upgrades:

• Dependabot: built into GitHub

• Renovate: more configurable, e.g.

• Upgrade rules for each dependency group

• Bundle updates to minimize noise

• Your CI vets new versions for you!

https://xkcd.com/2347/

https://docs.github.com/en/code-security/dependabot/dependabot-version-updates
https://www.mend.io/renovate/

DESY. 13

Example
Renovate on GitHub

A PR opened by Renovate

• You authorize Renovate for your repo/user/organization

• Renovate bot proposes upgrades based on your rules, e.g.

• Run once a month, on Thursday morning

• Major updates: file a PR

• Minor, patch updates: group changes and merge if tests pass

• Development dependencies: group changes and merge if tests
pass

• If compatibility issues arise: fix and push to base branch

https://github.com/AmpelProject/Ampel-core/pull/232
https://github.com/AmpelProject/Ampel-core/blob/e0780bf62132be205234e66240ca763ec81fcfb0/renovate.json
https://github.com/AmpelProject/renovate-config/blob/b3fa14fcf6718299174d701cf61542b242d17d2f/default.json#L6
https://github.com/AmpelProject/renovate-config/blob/b3fa14fcf6718299174d701cf61542b242d17d2f/default.json#L19-L22
https://github.com/AmpelProject/renovate-config/blob/b3fa14fcf6718299174d701cf61542b242d17d2f/default.json#L15-L18
https://github.com/AmpelProject/renovate-config/blob/b3fa14fcf6718299174d701cf61542b242d17d2f/default.json#L7-L8
https://github.com/AmpelProject/renovate-config/blob/b3fa14fcf6718299174d701cf61542b242d17d2f/default.json#L23-L27

DESY. 14

Good practices for dependency upgrades

• Use a dependency manager with lock files for
reproducibility

• Treat deprecation warnings as errors in your tests

• Beware of dependency hell

• Dependencies are a trade-off. Code you don't write is
code you don't have to maintain, but every new
dependency is a potential upgrade headache.

• Use only documented, public interfaces

• If you do have to depend on internals, keeping a
frozen copy ("vendoring") is sometimes less bad than
pinning a specific version (if license allows)

A frightening but mostly harmless dependency graph. Source

https://www.cppdepend.com/documentation/cppdepend-dependency-graph

DESY. 15

Takeaways

• GitHub Actions and GitLab CI/CD let you trigger an action whenever
you push, file a PR, the clock strikes midnight, etc

• Use this to

• Check whether changes break your software

• Publish packages to PyPI/container registry/whatever on demand

• Keep your dependencies up to date

• Other things: build and publish a static webpage, build and
publish docs, keep a mirror repository in sync, etc

