

- further optimization of DeepJet architecture
- training: b/c/light jets 1:1:1 (over-sampling of b & c), validation: b/c/light jets 1:1:3
- dropout rate reduced to 5%
- flipped order of the inputs

Particle Net: introduction

- based on Dynamic Graph CNN (Y. Wang et al., arXiv:1801.07829)
- treat jet as "particle cloud", input are all jet constituents
- key building block of Particle Net: EdgeConv
 - treat point cloud as a graph, each point is a vertex, edges are constructed as connections between each points and k nearest neighboring points
 - learn an "edge feature" for each pair $e_{ij} = MLP(x_i, x_j)$
 - MLP: parameters are shared among all edges
 - aggregation of edge features: x_i' = mean_j e_{ij}

(a) ParticleNet

Particle Net: introduction

Variable	Definition
$\Delta\eta$	difference in pseudorapidity between the particle and the jet axis
$\Delta\phi$	difference in azimuthal angle between the particle and the jet axis
$\frac{1}{\log p_T}$	logarithm of the particle's p_T
$\log E$	logarithm of the particle's energy
$\log \frac{p_T}{p_T(\mathrm{jet})}$	logarithm of the particle's p_T relative to the jet p_T
$\log \frac{E}{E(\text{jet})}$	logarithm of the particle's energy relative to the jet energy
ΔR	angular separation between the particle and the jet axis $(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$
\overline{q}	electric charge of the particle
isElectron	if the particle is an electron
isMuon	if the particle is a muon
isChargedHadron	if the particle is a charged hadron
isNeutralHadron	if the particle is a neutral hadron
isPhoton	if the particle is a photon

secondary vertices:

coordinates: Δη, ΔΦ

• features: log(pT), mass, number of tracks, χ2/ndf, 2D & 3D IP and their significances

2 SVs, all jet constituents

Backup

10

Next steps

- optimize Particle Net:
 - NN complexity, LR
 - more input features
 - less jet constituents?
- study sensitivity of identifying s jets
- integration into iLCSoft

Architecture & data pre-processing

- classify jets into three classes: b jets, c jets & light jets
- ordering of input particles by (as applied in CMS)
 - impact parameter significance for charged jet constituents
 - shortest angular distance to a secondary vertex (by momentum if there is no secondary vertex) for neutral jet constituents
 - flight distance significance for secondary vertices
- if a value of a features is not available, the value is set to -10
- normalize input features to mean 0, std 1

15

16

Purity

Particle Net

Particle Net

19