

ECAL PerformanceTowards the experiment

Shan Huang (Tel Aviv University)

on behalf of the ECAL workforce

LUXE Workshop 2023

WEIZMANN
INSTITUTE
OF SCIENCE

People on ECAL Performance

(Alphabetically)

AGH: Dawid, Jakub, Marek

DESY: Wolfgang

■ ISS: Alina, Mihai, Veta

■ TAU: David, Dor, Halina, Michal, Nir, Shan

• UW: Filip, Grzegorz, Kamil, Piotr

ECAL-P Overview

- Background
- Calibration and Optimization
- Position reconstruction
- Spectrum reconstruction
- One more thing ...

- Electromagnetic background of ECAL-P had been well discussed in the CDR
 - electron-laser: beamline ⇒ extra shielding
 - \blacksquare gamma-laser: IP box \Longrightarrow enlarged IP box entrance

- Hadronic processes were off and particles were killed at dump in CDR simulations
- Severe hadronic background was found in the full simulation
 - Electron dump
 - Al window
 - EM background

- The charge deposit is proportional to the peak amplitude of filter output
- The readout system needs at least two timeframes
 (100 ns) to obtain the peak value

Figure 2.29: Examples of deconvolution filter output at $T_{smp} = \tau_{sh} = 50$ ns.

- Irregularly high deposits (~100 MIPs) were found
- It was contributed by nuclear reaction, e.g. $n + Si \rightarrow p + D + Mg$
- It took place tens of times per BX in the central area
- The high deposits were "smeared" in the whole area by randomized redistribution

Background sample = Constant background + redistributed high deposits

- The signal-to-noise ratio in gamma-laser setup is worse than in the electron-laser, but still acceptable (below 1.5 on the graph)
- More "consistent" in the central area
- Sourced back to the upstream dump

The accumulated background at 100 ns, topped at 5 MeV (50 MIPs) for e-laser and g-laser setups

- Background
- Calibration and Optimization
- Position reconstruction
- Spectrum reconstruction
- One more thing ...

ECAL-P Resolution

- The ECAL is going to calibrate the position-energy dependence created by the magnetic dipole
- A full 20-layer ECAL has the energy resolution of 20%/sqrt(E/GeV) (in the CDR)
- Due to funding limit, it is likely that the ECAL-P
 will only have 15 active layers
- Several combinations of sampling schemes are under investigation

Optimization

- An enumeration of all possible combinations were run to find the best 15 layers
- The simplest method, calibration by a constant ratio, was used

100

Calibration & Optimization

Calibration

- In the CDR, a constant calibration factor was used for all layers
- It has been found out that different energy has different optimized calibration ratio
- An algorithm of compensation has been developed by giving different layer different calibration ratio

Calibration

- In the CDR, a constant calibration factor was used for all layers
- It has been found out that different energy has different optimized calibration ratio
- An algorithm of compensation has been developed by giving different layer different calibration ratio
- A perceptron was also trained and confirmed the trending of weight distribution

Calibration

 The framework developed by Filip gave a faster result with more flexibility

15 layers (15 X0)

Re-segmentation

- A new segmentation is going to be implemented in the analysis
 - Pad size: from 5 x 5 mm² to 5.5 x 5.5 mm²; sensor size from 55 x 5.5 cm² to 54 x 9 cm²
- The digitalization and charge sharing, and the effect of misalignment between layers will be considered

- Background
- Calibration and Optimization
- Position reconstruction
- Spectrum reconstruction
- One more thing ...

Logarithmic weighting

- The weighting method exploits the symmetry of cigar-shaped shower
- By introduced a logarithmic cut-off, the weighting method is more sensitive and more robust against random remote deposits (by photon)
- The magnetic dipole introduces an angle-energy distribution and creates bias in weighting method
- An algorithm based on machine learning is being developed

- Background
- Calibration and Optimization
- Position reconstruction
- Spectrum reconstruction
- One more thing ...

Energy flow

Reconstruction Network

- The energy flow method is essentially a hand-written "network" that associates the energy deposit of all pads to the bins of energy spectrum
- The idea of using machine learning is to find the weights in an efficient way
- A convolutional neural network is used to "recognize the image"
- The neural network is learning the dependency between position and energy that benefits the

resolution

CNN based algorithm

- The CNN successfully reconstruct the energy spectrum not only with 20 or 15 layers, but also even with only 5 layers above a multiplicity threshold
- The method has a difficulty with generalization
- We are working on striping out the information of multiplicity

20-LAYER ECAL WITH THE BACKGROUND

5-LAYER ECAL WITH THE BACKGROUND

- Background
- Calibration and Optimization
- Position reconstruction
- Spectrum reconstruction
- One more thing ...

Summary

- The LUXE ECAL group is working towards the final design of the ECAL-P and a ready-use reconstruction toolkit
- The background study so far confirms that the signal-to-noise ratios are generally acceptable
- A framework has been developed to find out the optimized design of ECAL-P
- Logarithmic weighting is so far one of our best methods for position reconstruction
- ullet A machine learning method based on CNN is successfully reconstruct the positron beam's spectrum with very few X_0 , comparing to the benchmark of energy flow
- Things are still on our list:
 - Uncertainty of background subtraction (fast simulation)
 - Digitalization and other effects
 - Clustering (for the cases of multiplicity around 10)
 - Thorough studies on ECAL-E

Thank you for your attention!

Backup of TB