SM activity in the DESY ATLAS group

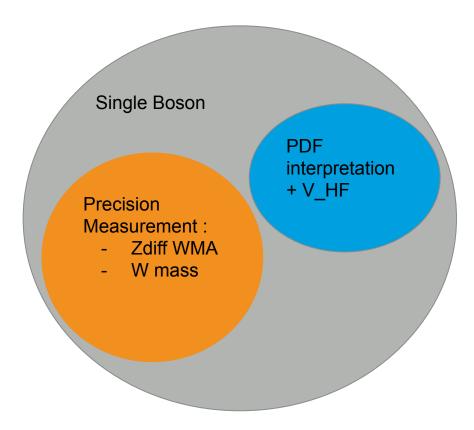
L. Aperio Bella on behalf of many

Jour fixe – 30th August 23

New publication since last 6 months

- Measurements of Z_{γ} + jets differential cross sections in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector - https://arxiv.org/abs/2212.07184 Accepted by JHEP
- Observation of WZγ production in pp collisions at √s=13 TeV with the ATLAS detector -STDM-2019-17 (DESY News: New ATLAS observation: Three different bosons at once - Deutsches Elektronen-Synchrotron DESY) Accepted by PRL
- Z boson transverse momentum and rapidity measurement in full phase space at 8 TeV + α_s determination using Z boson transverse momentum at 8 TeV - ATLAS-CONF-2023-015 and ATLAS-CONF-2023-013 - paper in preparation (Briefing ATLAS measures the strength of the strong force)
- Precise measurements of W and Z transverse momentum spectra with the ATLAS detector at $\sqrt{s} = 5.02$ TeV and 13 TeV paper in preparation ATLAS-CONF-2023-028 / (Briefing WZ-properties-milestone)
- Measurement of tt and Z cross-sections and their ratio using pp collisions at $s\sqrt{=13.6}$ TeV with the ATLAS detector paper in preparation (ATLAS-CONF-2023-006)
- Compatibility and combination of world W-boson mass measurements (https://arxiv.org/abs/2308.09417)

DESY + Freiburg almost exclusive effort


Single-Boson final state

- PROS: very outstanding results, unpresented precision reached
- CONS: Usual time-scale for a precision SM analysis (unfortunately) > 3,4 years bunch of publication now of efforts started several years ago

SM/Top + W-Mass (LHC/Tevatron)

DESY SM group

Group composition in the near past

Di-Boson:

- 3 boson process
- diboson + jet
- diboson VBS

DESY SM group

Group composition - now

Single Boson + V HF Precision Measurement: **Zdiff WMA** W mass

PDF interpretation and PDF oriented analysis expected to be reduced in the future

Multi-Boson final state:

Dibsoon activity in DESY SM group expected to be reduced in the future

Di-Boson:

- 3 boson process
- diboson + jet
- diboon VBS

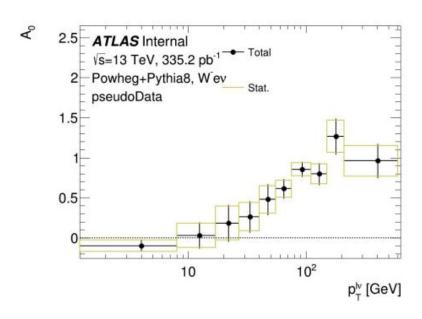
- People involved:
 - 2 staff: Ludovica Aperio Bella (egamma convener), James Ferrando (Data preparation coordinator <u>left August</u> 23),
 Sarah Heim (limited involvement)
 - 2 fellows: Filip Nechansky, Filippo Dattola
 - 3 students: Alberto Rescia, Craig Wells *(Last year of PhD)*, Lukas Bayer (<u>new</u> 1st May), Joshua Newell (<u>new</u> DESY/Liverpool 1st Oct)

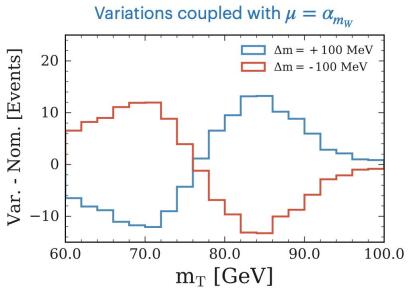
Focus of the group activity (the way forward)

Main part of the group focus on: **single Boson** (W,Z) (LAB)

- PDF:
 - Low-mass DY [analysis close to publication] (James)
 - Z+HF Z+bb analysis focusing on jet substructure observables (James + Alberto + LAB)
- Precision measurements:
 - Z fourfold cross-section measurement, angular coefficient, extraction of sin2θW @13TeV (LAB + Filip + Craig + Lukas)
 - W mass with low-mu data (LAB + Filippo + Josh)
 - W polarization low-mu data (LAB)

Other activities (Sarah)

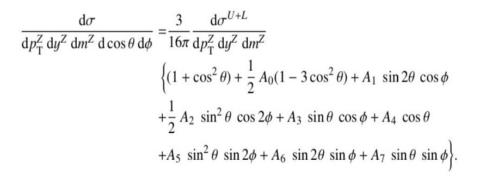

- Search for γγVBS (Sarah, still very preliminary stage, plan: ALPS interpretation)
- \(\gamma\gamma\text{WW measurement}\) (Filip limited involvement)

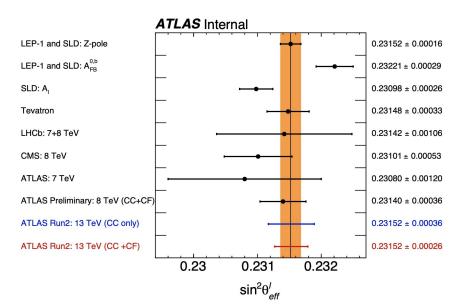

Current Analysis details

W-Boson Precision Measurements with low-mu data

Precision test of QCD and EW sector of SM

- First ever measurement of <u>W polarization</u> using
 13 TeV low-mu data
 - This analysis <u>was ideated and initiated by</u>
 <u>LAB</u> (DESY contribution from Ruth Jacob, Craig Wells)
- W mass measurement with better precision
 - DESY focus: implement a simplified
 Gaussian model for template fits to extract the mW
 - Use improved PDF and pT modelling from ongoing analyses.
 - Outlook: Collaboration with DESY theory department to improve the theory model to NP N3LL accuracy



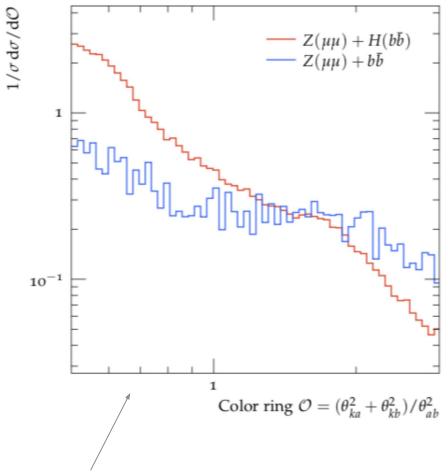

DESY.

Four-fold Z measurement @13TeV

Precision test of QCD and EW sector of SM

- The data statistics collected in the full Run-2 gives an unprecedented opportunity to measure the complete decomposition of the Drell-Yan cross section in [m_π: y_π: p_{Tπ}: cosθ*] bins.
- Ongoing analysis using the full Run-2 dataset:
 - Z angular coefficients (Ai) and DY differential cross-section dσ+Ai/dp_T^Zdy^Z measurement [eeCC + μμCC channel]
 - Below % precision expected also at very high transverse momentum
 - Work on eeCC almost finished and compatibility studies with muon channel being performed
- Addition of central-forward ($|\eta_e|>2.5$) channel: Ai + $d\sigma/dp_T^Zdy^Z$ towards $sin^2\theta^{eff}$ extraction (CC+eeCF)
 - optimal sensitivity and minimal theory uncertainties: $dp_T^Z dy^Z$ measured from data in 3 mass bin (m_{\parallel}) .
 - Calibration of forward electrons
 - expect an improvement of up to 15% in sensitivity in A4 through forward electron calibration
 - expected weak mixing angle sensitivity δsin²θeff ~ 26×10⁻⁵

Vector Boson + HF Measurements

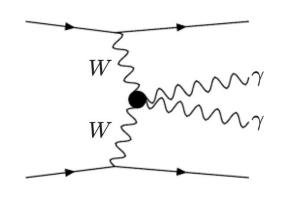

Precision tests of QCD in a rich experimental environment

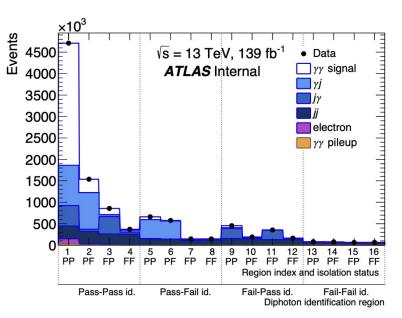
Vector Boson+HF:

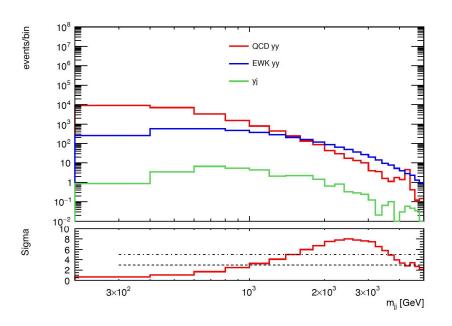
- Measurements of Vector boson production in association with heavy flavour quarks can act as a direct probe of heavy flavour PDFs
- Working on a full Run 2 measurement of Z+bb production, including very high PT production
 - Want to study <u>jet substructure</u> in this final state:
 - e.g Lund plane can be used to discriminate
 H->bb from bb in association with Z
 (see <u>arXiv:2112.09650</u>)

Status:

 Proceeding with the analysis, completed a list of substructure variables to the list of observables to measure including: Lund-plane, D₂^(a), jet colour-ring (new)

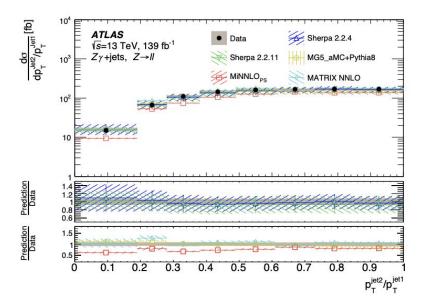


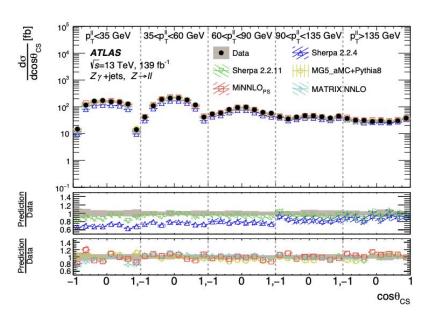

Jet colour ring example figure from arXiv:2110.12918


Measurement of γγ VBS

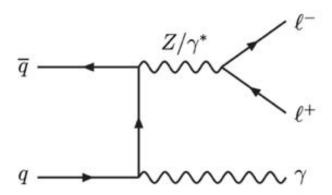
Measurements of EWK production of $\gamma\gamma$

- Purely electroweak process not yet observed
- Sensitive to γγWW coupling
- γγjj important background to h→γγ
- Plan to measure the inclusive cross section
 - QCD and EWK contribution together
 - Extract EWK contribution alone if statistic is enough
- Effort recently started full Run2 data set .
- From preliminary estimates, we should be able to observe it!



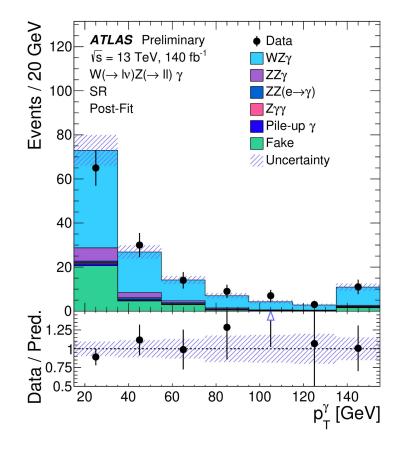

Published results

Differential cross section for Zγ+ jet


Measurements of QCD radiation in diboson process

- Good statistic and low background → Good candle for SM measurements
 - Use this measurement for test of QCD radiation modelling (resummation, parton shower)
 - Important background for Higgs searches
- Compare results with fixed order calculation (MATRIX) and other PS MC (Sherpa, MiNNLOPS)
- Use two dimensional unfolding
- Results use full Run2 dataset. Published as CONF Note for ICHEP 2022. Paper accepted by JHEP (<u>arXiv:2212.07184</u>)

New public results: submitted to JHEP arXiv:2212.07184

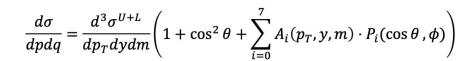


Search for WZy production

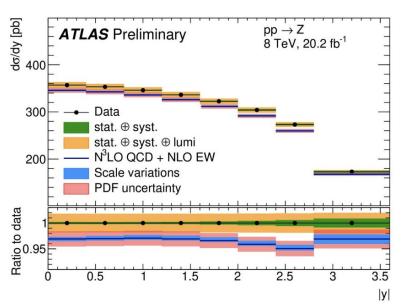
First Observation of another rare decay!

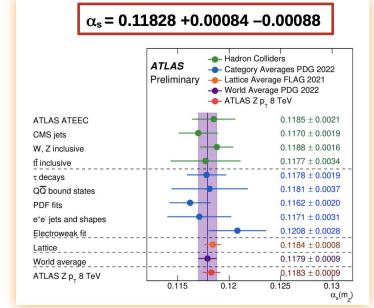
- Multiboson production is important for gauge coupling investigation and complimentary to VBS
- WZγ production observed for the first time with 6.3
 s.d. significance

Process	SR	$ZZ\gamma$ CR	$ZZ(e \to \gamma)$ CR
$WZ\gamma$	92 ± 15	0.21 ± 0.07	0.56 ± 0.14
$ZZ\gamma$	10.7 ± 2.3	23 ± 5	1.8 ± 0.4
$ZZ(e o \gamma)$	3.0 ± 0.6	0.028 ± 0.020	30 ± 6
$Z\gamma\gamma$	1.05 ± 0.32	0.15 ± 0.06	0.29 ± 0.10
Non-prompt background	30 ± 6	=	H
Pile-up γ	1.9 ± 0.7	-	-
Total prediction	139 ± 12	23 ± 5	33 ± 6
Data	139	23	33


$$\sigma_{
m exp}^{
m fid} = 1.50 \pm 0.01 \ ({
m stat}) \pm 0.02 \ ({
m PDF} + lpha_S) \pm 0.07 \ ({
m scale}) \ {
m fb}$$
 @ NLO (QCD) + LO (EW) $\sigma_{
m obs}^{
m fid} = 2.01 \pm 0.30 \ ({
m stat}) \pm 0.16 \ ({
m syst}) \ {
m fb}$

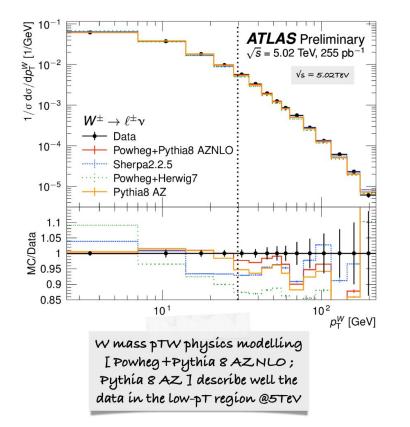
Full-lepton phase space Drell-Yann cross sections at 8TeV

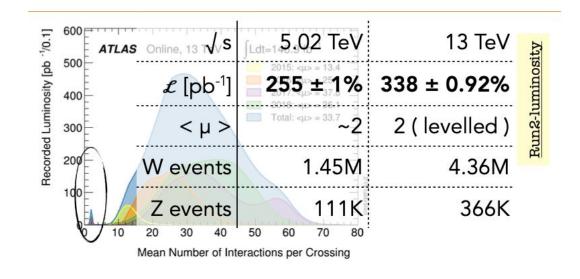

ATLAS measures the strength of the strong force


A convenient way of expressing the DY cross section is through the factorisation of the production dynamic and the decay kinematic properties of the dilepton system

- Simultaneous determination of angular coefficient and cross-sections
 - Analytical propagation of fit results to full-lepton phase space
 - Negligible theory uncertainties: cross sections are parameters of the fit, and not the result of an extrapolation
- Statistically dominated measurement ‰ level in the central region % uncertainties up to |y| < 3.6
- First comparison to N3LO QCD predictions

Very powerful: avoids theoretical extrapolation of fiducial lepton cuts to full phase space and thereby opens the door to a rich field of precise interpretations




W and Z boson pT measurements

first low mu data result!

Measurements using low-mu data (5 TeV and 13 TeV)

Measurement of the Z/W p_T ratio - reduce the p_T W modelling uncertainty in m_W measurement

Most precise integrated fiducial measurement of the W[±] and Z boson @ 5.02 and 13 TeV:

Process	Cross section at $\sqrt{s} = 5.02 \mathrm{TeV}$ [pb]	Cross section at $\sqrt{s} = 13 \text{TeV} [\text{pb}]$	
$W^{-} \to \ell \nu$ $W^{+} \to \ell \nu$ $Z \to \ell \ell$	$1385 \pm 2 \text{ (stat.)} \pm 5 \text{ (sys.)} \pm 15 \text{ (lumi.)}$ $2228 \pm 3 \text{ (stat.)} \pm 8 \text{ (sys.)} \pm 23 \text{ (lumi.)}$ $333.0 \pm 1.2 \text{ (stat.)} \pm 2.2 \text{ (sys.)} \pm 3.3 \text{ (lumi.)}$	$3486 \pm 3 \text{ (stat.)} \pm 18 \text{ (sys.)} \pm 34 \text{ (lumi.)}$ $4571 \pm 3 \text{ (stat.)} \pm 21 \text{ (sys.)} \pm 44 \text{ (lumi.)}$ $780.3 \pm 2.6 \text{ (stat.)} \pm 7.1 \text{ (sys.)} \pm 7.1 \text{ (lumi.)}$	

experimental accuracy 0.4-0.5% with 1% lumi factor of 2 (3.5) better then previous W X-section at 5.02 (13TeV) good agreement with DYTURBO [NNLO+NNLL] prediction with 3 different PDF sets