


Constellation
First Concepts for a SCADA System

Simon Spannagel, DESY

1t EDDA Meeting
20/09/2023



SCADA - Supervisory control and data acquisition

From Wikipedia, the free encyclopedia

Supervisory control and data acquisition (SCADA) is a control system architecture comprising
computers, networked data communications and graphical user interfaces for high-level supervision of
machines and processes. It also covers sensors and other devices, such as programmable logic
controllers, which interface with process plant or machinery.

https://en.wikipedia.org/wiki/SCADA
* Industry standard for controlling power plants, production lines, factories, ...

* Commercial, very complex tools; vendor-specific protocols;
require dedicated setup effort

* Requirements are different from experimental physics DCS/DAQ

* Still a lot to learn from (system architecture, nomenclature, nomenclature)

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023


https://en.wikipedia.org/wiki/SCADA

EDDA - Exchange on & Development of DCS/DAQs

...from the project proposal:

Build a flexible DCS/DAQ software system

Provide a minimalist interface towards the devices

Base on industry-standard open source libraries

Keep required maintenance as low as possible

S. Lachnit - Constellation - 1st EDDA Project Meeting

20/09/2023



Satellite

State of things: Constellation

* We have been struggling with current community
solutions for quite some time

Used software frameworks devised & written decades ago .\ Inter-Satollite /‘
\\"‘m..______ L in}( '/
Partially unstable, unsuited for the task at hand, lack of features S

Maintenance tedious, technical foundation outdated, code quality degraded over
time

* Pondering for a while to replace with a newly-designed framework

First works by S. Lachnit as part of his master thesis:
Exploration of structures, libraries to use, implementation of proof-of-concepts

Culminated in collection of prototypes & protocols, called Constellation

* Hoping that EDDA will meaningful contribute to development

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



Re: Build a flexible DCS/DAQ software system

* Useful to control single laboratory setup (e.g. radioactive source measurement)
User story: Start measurement in the lab, return to office. Open up monitoring
tool, observe data trickling in, temperature being stable. Check logs
for anomalies. Go to meeting. Receive phone notification about
finished measurement, abort meeting,.

*  Possibility to integrate multiple setups (Detector DAQ, TCT laser control)
Userstory:  Write common configuration file detailing detector parameters and
laser driver/stage configuration. Start measurement.

* Lab supervision mode (multiple setups monitored but control not ceded)
User story: Central monitoring of multiple lab setups, but not necessarily controlled via
common Control Center but from individual lab workstations

* Synchronized operations (test beam environment, coordinated start/stop, central control)
User Story: ~ Run multiple systems in parallel with a central control; automated parameter
scans, resilience to failures like graceful restart

* Scalability for experiments (many detectors, multiple data endpoints & monitors)

B A X | B=

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



Example: Environment in Test Beam Campaigns

Timing Layer

* Testing of new detectors in beam usually requires
reference detectors
Example Pixel Sensor: » parice
*  Device under test (DUT)

Telescope for reference tracking

Timing Layer for triggering P ....................

Trigger Logic Unit (TLU) to distribute triggersto  [2552 oaal [our ono| [0 TimingEDAQ
Telescope & DUT _ — :

Tem perature sensors, ...

Other detectors (e.g. calorimeters) might require
different reference setups

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



Detector Control & Data Acquisition System

DUT Timing Layer

* Need for a central control software to control individual
DAQ systems during test beam campaign
—
* Tasks: . - particle
* Start and stop data taking
*  Configure DAQ systems

Connect DAQ to storage via network

* Stable operation and error handling RN |
Telescope DAQ| |DUT DAQ TLU Timing DAQ

e

Control DiskWriterA DiskWriterB

L, Tsesee R

No crashes in the middle of the night

* Easy to use during test beam campaign

* Straight-forward integration of new detectors & DAQ
systems to the framework

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



Re: Provide a minimalist interface towards the devices

* Making it easy to integrate devices on short time scales
* Abstraction of communication, heartbeating, log distribution etc in library

* New integrations only required to implement finite state machine transitions:

<ﬁxt
Configuration

. : Configuration PowerUp ~  PowerUp StartRun
Idle _ Disconnect | Launched request | Configuring successful Configured request | PoweringUp successful L| Ready | request | Running
Not connected to Control Center [ | *| DAQ configuration s % ; = R |
i fwae ot icaed Connect » DAQ not Omﬂgumd J function running m@mnﬂgumd | | DAQ powering up ) [DAQ reaq_y for data taking J ?t;;%l:t;l: | DAQ taking data )

PowerDown
request

PowerDown
sucessful

Deconfiguration [Reconfiguration [Reconfiguration
request request successful

Deconfiguration
Y successful

' Deconfiguring ' ( Reconfiguring
DAQ deconfiguration DAQ reconfiguration
| function running J | function running

Conceptual FSM for satellites (S. Lachnit)

PoweringDown '
DAQ powering down

: Function to be implemented by module
Blue: User request / supervisor command
Green: Transition after successful user action
Purple:  Automatic transition from framework

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



Re: Base on industry-standard open source libraries

* Maximize data throughput, robustness and configurability

* Today, many network communication libraries available, ZI IG

no need to roll our own (anymore)

. _ . Messagel’acR
Messaging, message queuing, routing, ...

Data packaging, binary wire representation, G
cross-platform portability, ... rafana

* Monitoring tools from networking context

O MESON
& GitLab

10 S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023

* Modern infrastructure (build system, version control, CI/CD)



Example: Grafana Dashboard

Dashboards

Memory / CPU logins Last 20 minute Memory
6%
5%
a%
3%
2% . . =
1% ST : 1 Support calls

0B 0% 10
16:50 17:00 17:10 17:20 17:30 17:30 17:35

memary = Cpu = logins == logins (-1 hour)

server requests Google hits

0.400

16:50 16:55 17:00 17:05 1710 1715

= web_server 01 == web_server 02 web_server_03 web_server_04 A-series

client side full page load

17:00 17:05 17:10 17:15 17:20 17:25

S. Lachnit - Constellation - 1st EDDA Project Meeting

B-series

Google hits

/-— ———

Sign ups

C-series

/
|

D-series

| 2

E-series

upper_25
upper_so
upper_ys

upper_90

- upper_95

6.81ms
142 ms
535 ms

104 5

1465




Concept: Robustness and Resilience

 Not all failures should lead to an abortion of the current session c

e What should be done if a satellite crashes in the middle of a run?
The concept of importance

essential: run can not be started without started without the Satellite, run is
immediately stopped on connection loss / interrupt

desired: run is marked as degraded if Satellite not connected or connection loss /
interrupt during run, but does not cause a run to be stopped or prevents a run
from being started

regular: only marks run as degraded when added or removed during run

optional: does not affect run in any way

12 S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



13

Concept: Robustness and Resilience

1) Each satellite can has user-configured importance
2) Action depends on level of importance

3) If the satellite importance is essential, the run will be aborted
If the satellite importance is desired, regular or optional, the run is not aborted

4) Current run/session marked as degraded if importance is higher than optional
(akin to a degraded RAID system)

5) Alarm Handling - Notification to the user (Ul, Email, Mattermost, etc.)

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



14

Concept: Heartbeating

Continuous low-
frequency message
pattern

E.g. implemented as ping-
pong (REQ-REP) pattern

Ensure components of
constellation are still
connected

Built-in lenience for
congestion situations
(multiple lives)

Control Center:

<r.ontro| center heartbeat loop <

v

try_send heartbeat failed,,f__@

lsuccesful

succesful

t

4
ye2 message valid? j'o
e ™ Vi Y

| update state |

- _4
a T

| refill lives |
§ )

| substract live |
N 4

4 Iives@m)@

yes

o

/ k.
| wait for heartbeat interval
.\‘- /'
[

S. Lachnit - Constellation - 1st EDDA Project Meeting

Satellite:

@ N
refill lives |
- 4

satellite heartbeat Ioop/<

v

<try_recv heartbeat Bl led‘;@

lsuccesful

: n
message valid?

yes 0

-

f R
| substract live |
b A

¢ IivesM

yes A

> <
try_send status iliee

succesful

/ :
a ™
| wait for heartbeat interval |
L | i

20/09/2023



Concept: Logging / Monitoring

* Flexible & transient subscription to log levels & devices
During run, new logger can be started, which subscribes to a given log type
Log type subscription can be changed on the fly

* Basedon ZeroMQ RFC 29/PUBSUB, allows to publish messages with specific topic
Subscribers can subscribe to multiple topic via pattern matching
Publish logs e.g. to <LOG_LEVEL>/<SAT_NAME> and stats to <SAT_NAME>/<STAT>
Loggers can subscribe to global log level as well as log levels for specific Satellites

* Network protocol ensures that there is only traffic on publisher when there is a subscriber to the
topic

Device code can contain 1000s of DEBUG message statements, they never leave the machine
unless someone requested them.

15 S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023


https://rfc.zeromq.org/spec/29/

Re: Keep required maintenance as low as possible

* Document everything!
User manual describing setup & operations
Developer manual detailing code base structure & environment

Explicitly documented, versioned network protocols for communication

* Essentially follow industry-standards on coding conventions:
Work with strict requirements (code formatting, linting, code documentation)
Merge code after code reviews from other developers only

Extensively use continuous integration & deployment (GitLab CI/CD)

16 S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



17

Constellation Host Identification and Reconnaissance Protocol

« Status: draft
« Editor: The Constellation authors

The Constellation Host Identification and Reconnaissance Protocol (CHIRP) defines how different hosts
announce their services and connect to each other on the network.

Preamble

The key words “MUST", “MUST NOT", “REQUIRED", "SHALL", “SHALL NOT", “SHOULD", "SHOULD NOT",
“"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119,

Goals

The CHIRP protocol provides a way of discovering and announcing services on a network segment and
provide the means for hosts to connect over peer-to-peer connections. The goals are:

« To work with no centralized services or mediation except those available by default on a network.

+ To allow service discovery both for late-joining clients and for lingering clients when a service provider
host appears late.

+ To facilitate the exchange of connectivity information for different services and the ability to select
distinguish between them.

Implementation

Identification and Life-cycle

A CHIRP host represents a source or a target for messaging. Hosts usually map to applications. A CHIRP host
is identified by a 16-octet universally unique identifier (UUID). CHIRP does not define how a host is created or
destroyed but does assume that hosts have a certain durability.

Host Discovery and Service Announcement

CHIRP uses UDP IPv4 beacon broadcasts to discover hosts. Each CHIRP host SHALL listen to the CHIRP
discovery service which is UDP port 7123. Each CHIRP host SHALL broadcast, upon creation, on UDP port
7123 a beacon that identifies itself to any listening hosts on the network. A separate CHIRP beacon SHALL be
broadcast for every service the host advertizes.

Concept: CHIRP - zeroconf network discovery

The CHIRP beacon consists of one 27-octet UDP message with this format:

et S e e N I e Fommman B Fommmmm +

|lCIH]I|RI|P]| %01 | | UUVID | type | service | port |

e e it ST I SR e dmmm e Fmmm - +
Header Body

The header SHALL consist of the letters ‘C’, *H', I, ‘R' and ‘P, followed by the beacon version number, which
SHALL be %x01.

The body SHALL consist of the sender’s 16-octet UUID, followed by a one-byte beacon type identifier, a two-
byte service descriptor, and a two-byte port number in network byte order. If the port is non-zero this signals
that the peer will accept ZeroMQ TCP connections on that port number. If the port is zero, this signals that
the peer is disconnecting from the network.

The type SHALL be either %x01 (dubbed 'REQUEST') or %x02 (dubbed "OFFER’).

A valid beacon SHALL use a recognized header and a body of the correct size. A host that receives an invalid
beacon SHALL discard it silently. A host MAY log the sender IP address for the purposes of debugging. A host
SHALL discard beacons that it receives from itself.

When a CHIRP host receives a beacon of type "OFFER’ from a host that it does not already know about, with a
non-zero port number, it MAY connect to this peer if it SHOULD participate in the offered service.

When a CHIRP host receives a beacon with type 'REQUEST' from any host, with a zero or non-zero port
number, and it offers the requested service, it MUST respond with a CHIRP beacon of type "OFFER' for the
requested service.

When a CHIRP host receives a beacon of type "OFFER’ from a known host, with a zero port number, it SHALL
disconnect from this peer.

Protocol Grammar

chirp = [reguest] *offer

: Request offers from other hosts
request = header version vuid %x01 service port

: Make an offer of a service to other hosts

"



18

Summary of Status Quo

* Have started collecting concepts & protocol ideas for new DCS/DAQ/SCADA framework
for small experimental physics lab setups & experiments

First concepts for communication & protocols
First ideas for FSM states & transitions

Some concepts for log distribution, monitoring, Ul

* Still early phase, actively looking for contributors
Development of the software
Contributions in the form of sketches, ideas, requirements, problems to be solved

Later on: testing

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023



19

ldeas Worth Exploring

Do we need a constantly running Control Center or can we make an entirely
distributed system work? (distributed FSM)

What are options for writing Uls / HMIs (Human Machine Interfaces)

What situations does the FSM (finite state machine) need to be capable of
handling? (Disconnects, OOM, disk full, config errors, ...)
What Alarm Handling modes do we need (notification, auto-reconfigure, ...)

Your ideas, your requirements

Fill the questionnaire: https://t1p.de/kv8ul

S. Lachnit - Constellation - 1st EDDA Project Meeting 20/09/2023


https://t1p.de/kv8u1




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

