
Laboratory measurements Test-beam data analysis Deconvolution recap

FLAME measurements and test-beam analysis

Dawid Pietruch

AGH University of Krakow, Faculty of Physics and Applied Computer Science

pietruch@agh.edu.pl

7.09.2023

1 / 32



Laboratory measurements Test-beam data analysis Deconvolution recap

Plan of the presentation

1. Laboratory measurements
1.1 Test board
1.2 Preliminary calibration of FLAME readout
1.3 Pulse shape
1.4 FLAME readout linearity

2. Test-beam data analysis
2.1 Amplitude reconstruction
2.2 Time of arrival reconstruction
2.3 MPV distribution in channels and sensors
2.4 Anisotropy in 2 hits events
2.5 Baseline and common-mode in time

3. Deconvolution method

2 / 32



Laboratory measurements Test-beam data analysis Deconvolution recap

Laboratory measurements
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Testing board

We have recently received
injector board and are at the
beginning of the systematic
FLAME measurements.

Injected charge: 2.5 - 250 fC
All 128 channels can be
activated separately using a
jumper.

Fig. 1: Testing board visualisation
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Preliminary calibration of FLAME readout

All channels were tested by
injecting the same charges
48.5, 92.3 and 136.1 fC for
three-point linear regression.

The peek-to-peek gain
fluctuations between channels
are below 3%.

Fig. 2: Preliminary calibration of FLAME readout channels
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FLAME pulse shape

Another test was to obtain a
detailed pulse shape which was
seen from the perspective of
the ADC. In this case, the
phase of initial pulse from
generator ws changed in range
0 - 50 ns by 1 ns.

Fig. 3: Interpolated pulse shape from series of phase shifted measurements
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FLAME pulse shape

Once the detailed pulse shape
was obtained, the theoretical
CR-RC response was fitted for
the unit step function. As can
be seen, the theoretical
function matches with the
shape obtained.

Fig. 4: Interpolated pulse shape from series of phase shifted measurements with CR-RC
pulse fitted
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FLAME readout linearity

In order to check the linearity
of FLAME readout, charge
was injected into one channel
in range 4-250 fC. We can
observe perfect linearity
(R2=0.9999) up to 180 fC.

Fig. 5: FLAME readout response
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Further measurements in progress...

7 / 32



Laboratory measurements Test-beam data analysis Deconvolution recap

Test-beam data analysis
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Amplitude reconstruction

▶ FPGA - online
reconstruction using
deconvolution

▶ Debug - offline
reconstruction from raw
ADC data using
deconvolution with
corrected shaping time

▶ FIT - offline
reconstruction from raw
ADC data using fitting

Offline deconvolution from
debug and fit to debug data
give similar results. Fig. 6: Example of amplitude reconstruction histogram for run 4533
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Time of arrival reconstruction

For the first time we started to
look at the TOA(time of
arrival) reconstruction, but we
are very far from reaching
conclusions.

Time-of-arrival reconstruction
during test beam, offline
deconvolution from debug and
fit to debug data gives us also
similar results.

Fig. 7: Comparison of TOA reconstruction from deconvolution on FPGA, deconvolution
from debug data and CR-RC FIT to raw ADC samples
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MPV distribution in channels and sensors

Depending on the sensor MPV
change from 19.93 to 21.41
LSB.

Several sensors were used
during the test beam, and
knowing the MPV position
calibration can be performed.

Fig. 8: MPV distribution in channels and sensors
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Normalised MPV distribution in channels and sensors

Gain fluctuations are higher
than those obtained in
laboratory measurements.
After normalisation by dividing
by mean MPV per sensor we
achieved correction factor for
every channel and sensor.

Fig. 9: Normalised MPV distribution in channels and sensors
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Analysis of geometry

Fig. 10: Geometry explanation
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Analysis of spatial configurations of 2-hit events

Fig. 11: Pad geometry

Fig. 12: Calice 75 run 4448
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Analysis of hits geometry

Two ways to display information about angle

Fig. 13: Calice 75 run 4448
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Fig. 14: Calice 75 run 4448
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Anisotropy

In GaAs sensors, we can clearly
see the anisotropy on the y
axis - axis of trace direction.
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Amplitude of 2 hits events

In Anton 1 and Yan
1 sensors there are
clearly visible
differences in sum of
amplitudes in event.
Does big fraction of
one particle 2-hit
events come from:

▶ charge sharing?

▶ cross-talk?

To make firm
conclusions we need
to take in to
account telescope
data in our analysis.
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Separation of 2-hit events types

In Anton 1 and Yan
1 sensors there are
clearly visible
differences in sum of
amplitudes in event.
Does big fraction of
one particle 2-hit
events come from:

▶ charge sharing?

▶ cross-talk?

How can we explain
this distribution?
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Amplitude of 2 hits events

By making this separation, we are trying to observe 1-particle events and 2-particle events in 2-hit events.
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Fig. 18: Anton 1 run 4454
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Fig. 19: Anton 1 run 4454
amplitude sum below 25
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amplitude sum above 35
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Angle after separation Yan 1
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Fig. 21: Yan 1 run 4532
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Fig. 22: Yan 1 run 4532
amplitude sum below 25
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Fig. 23: Yan 1 run 4532
amplitude sum above 35
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Baseline in time

An example of baseline
over time for ch no. 0
BL value: 82.8 LSB

Fig. 24: Baseline value over time run 4533 10 000 events
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Common-mode in time

Common-mode is not
correlated with particular
chip but appears globally
in all channels.

Fig. 25: Common-mode value in one event in run 4533
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Common-mode in time

Using the discrete Fourier
transform, we tested the
common-mode for the
existence of distinctive
frequencies.

Fig. 26: Common-mode value and discrete Fourier transform in one event in run 4533
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Common-mode in time

After summing the results of
the Fourier transform of the
10 000 events, we can see that
there is one distinct frequency:
around 7 MHz.
In the lab commono-mode is
much lower and without
distinct frequency.

Fig. 27: Discrete Fourier transform of common-mode for 10000 events combined in run
4533
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Deconvolution method
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Deconvolution method

In our front-end we uses CR-RC shaping, for which
amplitude response over time can be written as
formula below:

V (t) =
qin
Cfeed

t

τsh
e
− t

τsh (1)

If we include time before pulse, non-zero pulse start
time t0, amplitude α and pedestal b, equation 1 is
transformed into:

V (t) =

b, for t < t0.

α
(

t−t0
τsh

)
e
− t−t0

τsh + b, for t ≥ t0.
(2)

Fig. 28: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Our output pulses are a convolution of its impulse
response with the sensor’s current signal (deposited
charge), in order to find the input signal, we can
use a procedure inverse to the convolution called
deconvolution. In our system, this procedure is
performed digitally by a digital filter. Output
sample sk of simplest FIR(Finite Impulse
Response):

sk =
N−1∑
i=0

wivk−i (3)

wi - weight associated with input sample vk−i

Fig. 29: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

To calculate amplitude of pulse we have to use
some mathematical tools. Let start from front-end
response Vsh(s) in a Laplace domian can be
expresed as:

Vsh(s) =
1

s
H(s) =

1

τsh

1(
s + 1

τsh

)2 (4)

H(s) - transform function of the CR-RC shaper.

Fig. 30: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Next step is to transform from continuous domain
s to the discrete domain z using the Z transform.
After that and we achieved discrete transform
function D(z):

D(z) = z2 − 2e
− Tsmp

τsh z + e
− 2Tsmp

τsh (5)

Since z2 represents the sample which will be
received after 2 sampling periods, we can just
multiplied by z−2 delaying all samples by two
periods.

D(z) = 1− 2e
− Tsmp

τsh z−1 + e
− 2Tsmp

τsh z−2 (6)

Fig. 31: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Output sample value di , obtained at time i · Tsmp

can be expressed as:

di = vi − 2e
− Tsmp

τsh vi−1 + e
− 2Tsmp

τsh vi−2 (7)

where vi is the shaper output:

vi = V (i · Tsmp) (8)

If we calculate subsequent FIR output samples for
CR-RC asynchronous shaper we can notice that
filter produces only tow non zero samples or one in
synchronous case.

Fig. 32: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Ratio between tow non-zero filter samples after
reduction is given by:

d2
d1

=
t0

Tsmp − t0
e
− Tsmp

τsh (9)

This ratio enable to calculate pulse starting time
(TOA) which is necessary for amplitude
reconstruction.

t0 =

d2
d1
Tsmp

d2
d1

+ e
− Tsmp

τsh

(10)

Fig. 33: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Sum of two non-zero filter samples after reduction
can be expressed as:

d1+d2 =
A

τsh
e
− Tsmp−t0−τsh

τsh

[
Tsmp − t0

(
1− e

− Tsmp
τsh

)]
(11)

This sum enable to calculate pulse amplitude A

A = (d1 + d2)

[
τsh
Tsmp

e
Tsmp−τsh

τsh

]
e

−t0
τsh

1− t0
Tsmp

(
1− e

− Tsmp
τsh

)
(12)

Fig. 34: Example of asynchronous sampling with two nonzero filter
output samples at t0 = 30 ns
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Deconvolution method

Fig. 35: Result of deconvolution method on data from run 4533
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Thank you for attention
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Amplitude vs time of arrival

Fig. 36: Interesting dependency between amplitude and TOA 32 / 32
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