Effect of SUSY-QCD corrections on the dark matter relic density.

Julia Harz DESY Hamburg

DESY Theory Workshop

28.09.2011

Overview

Interplay of particle and astro particle physics

Dark matter relic density

Freeze out

Boltzmann equation

Theoretical uncertainties

Impact of SUSY-QCD-corrections on the relic density

- Dominant processes in relic density calculation
- Impact of SUSY-QCD corrections to annihilation
- Impact of SUSY-QCD corrections to co-annihilation

- DM@NLO current status
- Status of the co-annihilation project

Overview

Interplay of particle and astro particle physics

Dark matter relic density

Freeze out

Boltzmann equation

Theoretical uncertainties

Impact of SUSY-QCD-corrections on the relic density

- Dominant processes in relic density calculation
- Impact of SUSY-QCD corrections to annihilation
- Impact of SUSY-QCD corrections to co-annihilation

- DM@NLO current status
- Status of the co-annihilation project

Neutralino dark matter

 Minimal Supersymmetric extension of Standard Model (MSSM) with R-parity conservation

$$P_R = (-1)^{3(B-L)+2s} = \begin{cases} +1 & \text{SM} \\ -1 & \text{SUSY} \end{cases}$$

- Neutralino as lightest supersymmetric particle
- perfect cold dark matter candidate
- parameter studies in cMSSM with 5 universal parameters at GUT-scale

$$m_{1/2}$$
 m_0 A_0 $\tan\beta = \frac{v_u}{v_d}$ $\operatorname{sign}\mu$

Constraining the SUSY parameter space

Interplay of particle and astro particle physics

With LHC and PLANCK data it will be even more interesting

cosmology bounds

• 7 year data of WMAP $\Rightarrow \Omega h^2 = 0.1123 \pm 0.035$

Constraining the SUSY parameter space

Interplay of particle and astro particle physics

particle physics bounds

- direct searches e.g.
 - $\begin{array}{l} \underset{m_{\tilde{\chi}_0^1}}{m_{\tilde{\chi}}} > 46 \; GeV, \; m_{\tilde{t}} > 95.7 \; GeV, \\ m_{\tilde{\tau}} > 81.9 \; GeV, \; m_{\tilde{g}} > 107 \; GeV \end{array}$
- precision measurements e.g. $Br(b \rightarrow s\gamma) = (3.55 \pm 0.26) \cdot 10^{-4}$

With LHC and PLANCK data it will be even more interesting

cosmology bounds

• 7 year data of WMAP $\Rightarrow \Omega h^2 = 0.1123 \pm 0.035$

Freeze out Boltzmann equation Theoretical uncertainties

Overview

Interplay of particle and astro particle physics

2

Dark matter relic density Freeze out

- Boltzmann equation
- Theoretical uncertainties

Impact of SUSY-QCD-corrections on the relic density

- Dominant processes in relic density calculation
- Impact of SUSY-QCD corrections to annihilation
- Impact of SUSY-QCD corrections to co-annihilation

- DM@NLO current status
- Status of the co-annihilation project

Freeze out Boltzmann equation Theoretical uncertainties

Relic density and freeze out

Relic density is the number density of dark matter particles.

- early universe: thermal equilibrium $\tilde{\chi}_1^0 \leftrightarrow SM$
- freeze out:

out of therm. equilibrium, dark matter non-relativistic

• up to today:

comoving number density constant, relic density measurable

 $(\rightarrow \mathsf{WMAP}, \mathsf{PLANCK})$

$$\Omega \propto rac{1}{<\sigma
u >}$$

Freeze out Boltzmann equation Theoretical uncertainties

Boltzmann equation

Relic density can be described by Boltzmann equation.

$$\dot{n} + 3Hn = -\langle \sigma v \rangle \left(n^2 - n_{eq}^2 \right)$$

 $\langle \sigma \mathbf{v} \rangle$ cross section of annihilation and coannihilation

$$\langle \sigma v \rangle = \sum_{ij} \frac{2}{g_j} \left\langle \sigma_{ij} v_{ij} \frac{n_i^{eq}}{n^{eq}} \frac{n_j^{eq}}{n^{eq}} \right\rangle \quad \text{with} \quad \frac{n_i^{eq}}{n^{eq}} \propto \exp\left[\frac{-(m_i - m_\chi)}{T}\right]$$

⇒ Coannihilation gets important, when masses of LSP and NLSP almost degenerate

Public computational tools (e.g.): DarkSUSY Gondolo, Edsjö, Ullio, Bergström, et. al [astro-ph/0406204] MicrOMEGAS Bélanger, Boudjema, Brun, Pukhov et. al. [hep-ph/1004.1092]

Theoretical uncertainties in the relic density prediction

In cosmology

- choice of cosmological model Hamann, Hannestad, et.al. (2006), [hep-ph/0611582]
- variation in Hubble expansion rate

Arbey, Mahmoudi (2008), [hep-ph/0803.0741]

In particle physics

- precision of masses
 Allanach, Kraml, Porod (2003), [hep-ph/0302102]
- uncertainties of spectrum calculators Bélanger, Kraml, Pukhov (2005), [hep-ph/0502079]
- precision in the calculation of (co)annihilation cross section
 Baro, Boudiema, Semenov (2007), Inter-ph/0710.1821

Current status in calculating relic density

- Calculation in MicrOMEGAs and DarkSUSY only on extended tree level
- current theoretical uncertainties bigger than future precision of PLANCK
- significant impact of NLO-corrections on the relic density expected
- \Rightarrow Package DM@NLO for linking SUSY-QCD corrections to public programs

Theoretical uncertainties in the relic density prediction

In cosmology

- choice of cosmological model Hamann, Hannestad, et.al. (2006), [hep-ph/0611582]
- variation in Hubble expansion rate

Arbey, Mahmoudi (2008), [hep-ph/0803.0741]

In particle physics

precision of masses

Allanach, Kraml, Porod (2003), [hep-ph/0302102]

- uncertainties of spectrum calculators Bélanger, Kraml, Pukhov (2005), [hep-ph/0502079]
- precision in the calculation of (co)annihilation cross section
 Baro, Boudiema, Semenov (2007), Inter-ph/0710.1821

Current status in calculating relic density

- Calculation in MicrOMEGAs and DarkSUSY only on extended tree level
- current theoretical uncertainties bigger than future precision of PLANCK
- significant impact of NLO-corrections on the relic density expected
- ⇒ Package DM@NLO for linking SUSY-QCD corrections to public programs

Dominant processes in relic density calculation Impact of SUSY-QCD corrections to annihilation Impact of SUSY-QCD corrections to co-annihilation

Overview

Interplay of particle and astro particle physics

Dark matter reli

Freeze out

- Boltzmann equation
- Theoretical uncertainties

Impact of SUSY-QCD-corrections on the relic density

- Dominant processes in relic density calculation
- Impact of SUSY-QCD corrections to annihilation
- Impact of SUSY-QCD corrections to co-annihilation

- DM@NLO current status
- Status of the co-annihilation project

Dominant processes in relic density calculation Impact of SUSY-QCD corrections to annihilation Impact of SUSY-QCD corrections to co-annihilation

Dominant processes in relic density calculation

Dominant processes in relic density calculation mpact of SUSY-QCD corrections to annihilation mpact of SUSY-QCD corrections to co-annihilation

Impact of SUSY-QCD-corrections to annihilation

Example: Dominant Z-exchange

- enhancement of annihilation cross section into quarks by 50 % through QCD-corrections
- reduction of the predicted relic density
- significant shift of the WMAP favoured region

 $\tan\beta=$ 10, $A_0=$ 0, $m_0=$ 1500, $M_2=$ 600, $\mu>$ 0 Herrmann, Klasen, Kovarik (2009), arXiv:0907.0030 [hep-ph].

 $\Rightarrow \mbox{ Effect of corrections to the relic density lager than current} \\ experimantal uncertainties!$

Dominant processes in relic density calculation Impact of SUSY-QCD corrections to annihilation Impact of SUSY-QCD corrections to co-annihilation

Interesting $\tilde{\chi}_1^0 \tilde{t}_1$ -co-annihilation regions

 \Rightarrow Co-annihilation especially dominant for high values of A_0

Impact of SUSY-QCD corrections to co-annihilation

Rough estimation for $\tilde{\chi}_1^0 \tilde{t}_1$ -co-annihilation

- only $\tilde{\chi}_1^0 \tilde{t}_1 \to tg$ and $\tilde{\chi}_1^0 \tilde{t}_1 \to bW^+$ processes were taken into account
- co-annihilation contribution to the cross section of up to 85% expected
- significant effects through NLO-corrections expected (up to 50%)

 \Rightarrow SUSY-QCD-corrections to co-annihilation cross section promising!

DM@NLO - current status Status of the co-annihilation project

Overview

Interplay of particle and astro particle physics

Dark matter relic dens

Freeze out

- Boltzmann equation
- Theoretical uncertainties

Impact of SUSY-QCD-corrections on the relic density

- Dominant processes in relic density calculation
- Impact of SUSY-QCD corrections to annihilation
- Impact of SUSY-QCD corrections to co-annihilation

- DM@NLO current status
- Status of the co-annihilation project

OM@NLO - current status Status of the co-annihilation project

DM@NLO - current status

(DESY, Münster, Karlsruhe, Grenoble and Annecy)

Package DM@NLO enables linking of SUSY-QCD-corrections to (co-)annhilation at full next to leading order to MicrOMEGAs and DarkSUSY.

work on corrections to annihilation already finished

[B. Herrmann, M. Klasen, K Kovarik (2009)]

• $\tilde{\chi}_x^0 \tilde{q}$ -coannihilation work in progress

[JH, Q. Le Boulc'h, B. Herrmann, M. Klasen, K. Kovarik]

DM@NLO - current status Status of the co-annihilation project

Status of the $\tilde{\chi}^0_x \tilde{q}$ -co-annihilation project

⇒ Having to consider eight final states with self energies, vertex corrections, boxes and real emission.

DM@NLO - current status Status of the co-annihilation project

Verifying the co-annihilation tree level results

- Tree level for $\tilde{\chi}_{x}^{0}\tilde{q}$ -co-annihilation completely implemented
- Tree level results with CalcHEP sucessfully verified
- Virtual corrections analytically calculated
- Implementation of virtual corrections with their counter terms

⇒ Very good agreement with tree level results of CalcHEP!

DM@NLO - current status Status of the co-annihilation project

Regularization and renormalization

- Dimensional reduction (DRED) for preserving SUSY d.o.f.
- On-shell renormalization for real external particles

$$\begin{split} \sigma^{(v)} &= \sigma_g^{(v)} + \sigma_{\tilde{g}}^{(v)} = \\ & \frac{C_F}{16\pi^2} g_0 g_1 g_2 \left[\frac{1}{\epsilon}\right] + \text{UV} - \text{finite} \\ & + \frac{2C_F}{16\pi^2} \left(\left(g_0^L g_2^R g_1^L + g_0^R g_2^L g_1^R\right) m_{f1} + \left(g_0^L g_2^L g_1^R + g_0^R g_2^R g_1^L\right) m_{f2} \\ & + \left(g_0^L g_2^R g_1^R + g_0^R g_2^L g_1^L\right) m_{\tilde{g}} \right) \left[\frac{1}{\epsilon}\right] + \text{UV} - \text{finite} \\ \sigma^{(ren)} &= \sigma_g^{(v)} + \sigma_{\tilde{g}}^{(v)} + \sigma_g^{(w)} + \sigma_{\tilde{g}}^{(w)} + \sigma^{(c)} \end{split}$$

 \Rightarrow UV-cancellation allows first cross check during implementation

- \Rightarrow IR-cancellation through real emission
- ⇒ Cross check between Higgs and vector boson final states through Goldstone boson equivalence theorem

DM@NLO - current status Status of the co-annihilation project

Conclusions

- PLANCK will give stricter bounds on relic density with errors less than current theoretical uncertainties
- public codes like MicrOMEGAS and DarkSUSY do not take into account full NLO corrections
- Importance of co-annihilation processes in case of small mass differences between LSP and NLSP
- Expectation of significant impact of these corrections on the relic density
- Package DM@NLO allows to link the SUSY-QCD corrections to the public codes
- Interesting parameter studies with more precise predicted constrains and experimental data will be possible

DM@NLO - current status Status of the co-annihilation project

DM@NLO - current status Status of the co-annihilation project

Impact of SUSY-QCD corrections to annihilation

Example: A-Funnel region

- annihilation cross section reduced through QCD corrections by more than a factor two
- WMAP favoured regions shifted to smaller masses
- reverse effect at resonance point through corrections to the Higgs width

⇒ Effect of corrections to the relic density bigger than current experimental uncertainties!

