

Precise predictions for the W boson mass in BSM

Lisa Zeune

Based on work together with Georg Weiglein

DESY Theory Workshop, Hamburg

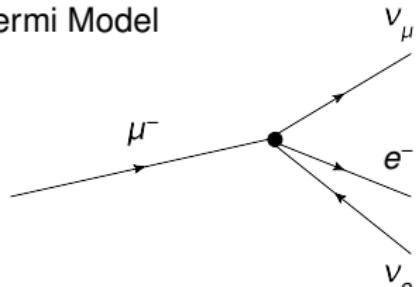
September 28, 2011

Introduction

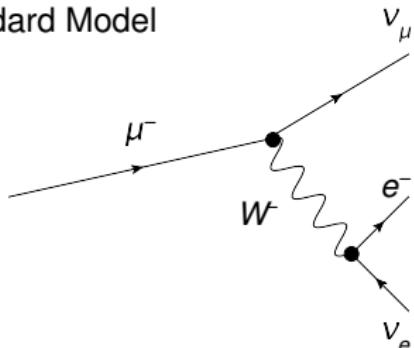
How to find new physics?

- Direct search for new particles
- Search for virtual effects of new particles

Electroweak precision observables


- EWPO: M_W , Γ_Z , $\sin \Theta_W^{eff}$, $g_\mu - 2$, $BR(b \rightarrow s\gamma)$...
- Highly sensitive to quantum effects involving the whole structure of a BSM model
- Precision measurement and precise theoretical prediction needed
 - ➡ Test Models
 - ➡ Constrain model parameters
- Current exp. value: $M_W^{exp} = 80.399 \pm 0.023 \text{ GeV}$ (accuracy 0.03%)

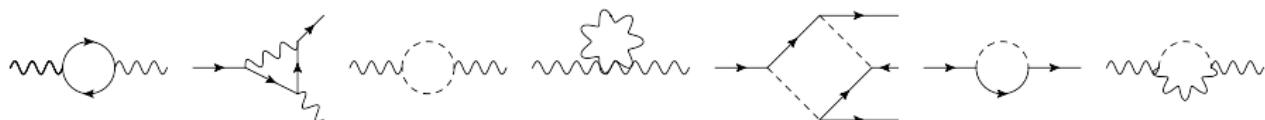
Combined Tevatron measurements: Expected $\delta M_W^{exp} \approx 12 \text{ MeV}$


[Jan Stark, Lepton and Photon 2011]

Determination of M_W

Fermi Model

Standard Model


- Compare Born amplitudes:

$$\frac{G_F}{\sqrt{2}} = \frac{M_Z^2 e^2}{8(M_Z^2 - M_W^2)M_W^2} \quad G_F \text{ contains the QED corrections in the Fermi model}$$

- All other loop corrections can be written as $\mathcal{M}_{\text{Loops}} = \Delta r \mathcal{M}_{\text{Born}}$

$$\frac{G_F}{\sqrt{2}} = \frac{M_Z^2 e^2}{8(M_Z^2 - M_W^2)M_W^2} (1 + \Delta r(M_W, M_Z, m_t, \dots, X)) \quad X = m_H, m_{\tilde{t}}, \dots$$

- Model dependent prediction of the W boson mass!

Δr Calculation

Current status of Δr

- **SM:** Full two-loop result and leading higher order corrections
- **MSSM:** One-loop result and dominant two-loop corrections

Our work

- New stand-alone one-loop calculation in SM and MSSM
(general model, complex phases)
- Incorporation of all known SM and SUSY higher order corrections

$$\Delta r^{MSSM} = \Delta r^{SM} + \Delta r^{SUSY} \quad \begin{matrix} \Delta r^{SM} \\ \Delta r^{SUSY} \end{matrix} \begin{matrix} : \text{Most advanced result in SM} \\ : \text{All known SUSY corrections} \end{matrix}$$

- **Most exact MSSM prediction for M_W**

- Cross-check with earlier calculations

- Easily extendable to new models

NMSSM, Models with 4th fermion generation, 2HDM, InertDM

⇒ Different models comparable in one framework

One-loop Δr formula

- Δr can be split into three parts: $\Delta r = \Delta\alpha - \frac{c_W^2}{s_W^2} \Delta\rho + \Delta r_{rem}$
- $\Delta\alpha \propto \log(m_f/M_Z)$: Contribution from light fermions
- $\Delta\rho = \frac{\Sigma_T^Z(0)}{M_Z^2} - \frac{\Sigma_T^W(0)}{M_W^2}$: Sensitive to mass splitting!

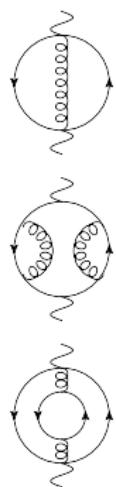
SM higher order corrections

$$\Delta r^{SM} = \Delta r^{(\alpha)} + \Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)} + \Delta r_{ferm}^{(\alpha^2)} + \Delta r_{bos}^{(\alpha^2)} \\ + \Delta r^{(G_\mu^2 \alpha_s m_t^4)} + \Delta r^{(G_\mu^3 m_t^6)} + \Delta r^{(G_\mu m_t^2 \alpha_s^3)}$$

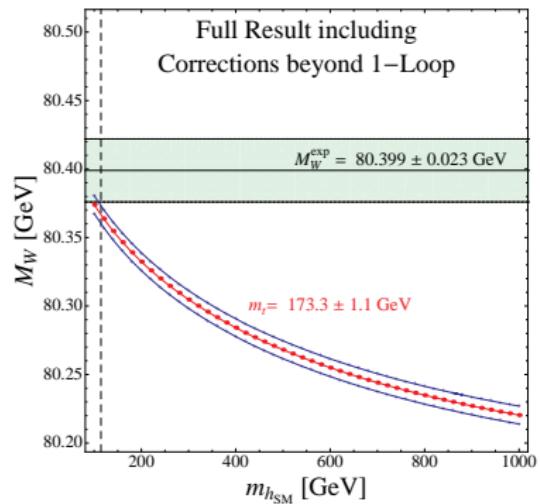
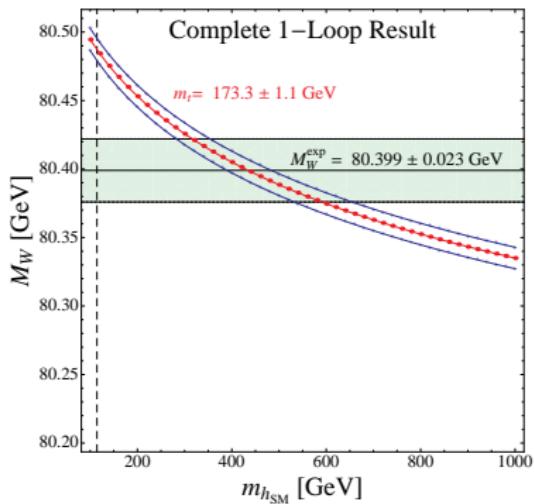
- $\Delta r^{(\alpha\alpha_s)}$ and $\Delta r^{(\alpha\alpha_s^2)}$: Two- and three-loop QCD corrections

[Chetyrkin, Kuhn, Steinhauser '95, Djouadi, Verzegnassi '88, ...]

- $\Delta r_{ferm}^{(\alpha^2)}$ and $\Delta r_{bos}^{(\alpha^2)}$: Fermionic and bosonic electroweak two-loop corrections


Fitting formula: Exact result within maximal deviations of 2.7×10^{-5}

[Awramik, Czakon, Freitas '06, Awramik, Czakon, Freitas, Weiglein '03]



- $\Delta r^{(G_\mu^2 \alpha_s m_t^4)}$ and $\Delta r^{(G_\mu^3 m_t^6)}$: Three-loop Top Quark contributions

[Faisst, Kuhn, Seidensticker, Veretin '03]

- $\Delta r^{(G_\mu m_t^2 \alpha_s^3)}$: Four-loop QCD Correction [Boughezal '06]

W boson mass prediction in the SM

- Corrections beyond one-loop cause downward shift of more than 100 MeV
- Dominant contributions: $\Delta r(\alpha\alpha_s) + \Delta r(\alpha\alpha_s^2)$ ($\approx 14\%$), $\Delta r(\alpha^2)$ ($\approx 9\%$ of $\Delta r(\alpha)$)
- Preference for small SM Higgs masses
- No overlap between 1σ band and theoretical prediction for $m_{h_{SM}} > 114$ GeV
- Dominant theoretical uncertainty from m_t (higher order uncertainty 4 MeV)

Particle content of the MSSM

Higgs sector

- Two Higgs doublets needed to give mass to up- and down-type fermions
- Five Higgs bosons h, H, A, H^\pm , three unphysical Goldstone bosons
- At tree-level: Higgs sector fully described by $m_A, \tan\beta = \frac{v_2}{v_1}$ = ratio of vevs

Sfermion sector

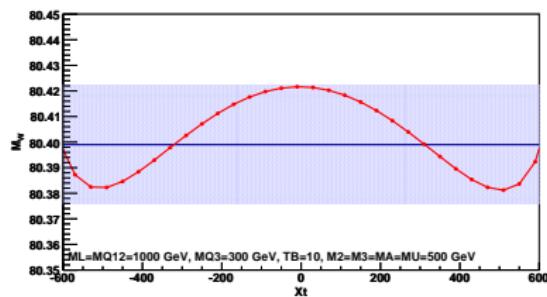
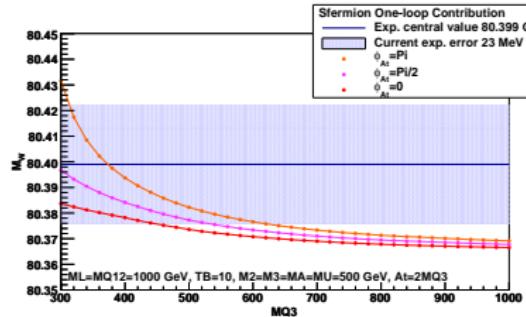
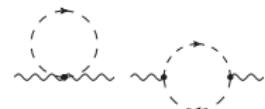
- Sfermion mass matrix:

$$M_{\tilde{f}} = \begin{pmatrix} \textcolor{brown}{M_{\tilde{f}_L}}^2 + M_Z^2 \cos 2\beta (l_3^f - Q_f s_W^2) + m_f^2 & m_f \textcolor{red}{X_f}^* \\ m_f \textcolor{red}{X_f} & \textcolor{brown}{M_{\tilde{f}_R}}^2 + M_Z^2 \cos 2\beta Q_f s_W^2 + m_f^2 \end{pmatrix}$$

- $\textcolor{brown}{M_{\tilde{f}_L}}, \textcolor{brown}{M_{\tilde{f}_R}}$: soft SUSY breaking parameters
- In numerical analysis: $\textcolor{brown}{M_{\tilde{f}_L}} = \textcolor{brown}{M_{\tilde{f}_R}} = \{M_L, M_{Q12}, M_{Q3}\}$
- $\textcolor{red}{X_f} = A_f - \mu^* \{\cot\beta, \tan\beta\}$ defines sfermion mixing

Chargino and neutralino sector

- Gauginos and Higgsinos mix to mass eigenstates: Charginos and neutralinos
- Chargino and neutralino sector governed by M_1, M_2 and μ




SUSY contributions to M_W

One-loop contributions

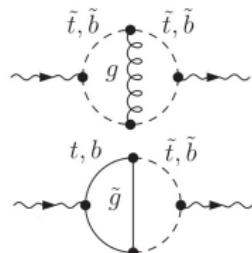
- Additional contributions: Sfermion, MSSM Higgs, chargino/neutralino sector

Sfermion sector

- Leading one-loop SUSY contributions (\tilde{t} , \tilde{b} loops)
- Contribution sizable for small MQ_3 , Significant phase dependence
- $\Delta\rho$: Sensitive to mass splitting between stops and sbottoms

Supersymmetric two-loop contributions

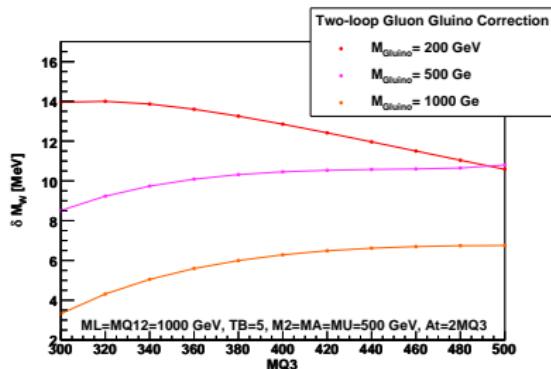
■ Irreducible supersymmetric two-loop contributions


- SUSY QCD corrections of $\mathcal{O}(\alpha\alpha_s)$:

(S)quark loops with gluon and gluino exchange [Djouadi et. al '98]

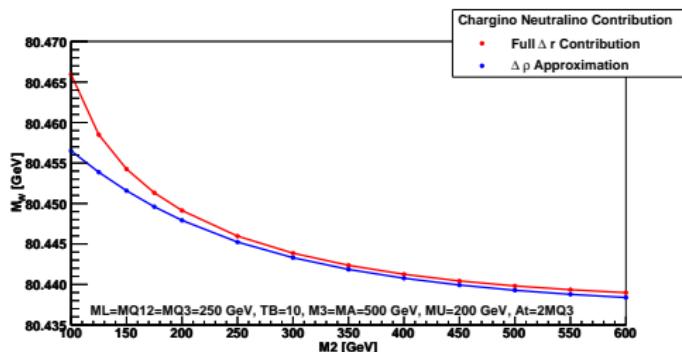
- Two-loop Yukawa contributions $\mathcal{O}(\alpha_t^2), \mathcal{O}(\alpha_t\alpha_b), \mathcal{O}(\alpha_b^2)$:

(S)quark loops with Higgs and Higgsino exchange


[Haestier, Heinemeyer, Stoeckinger, Weiglein '05]

■ Leading reducible two-loop corrections [Consoli, Hollik, Jegenlehner '89]

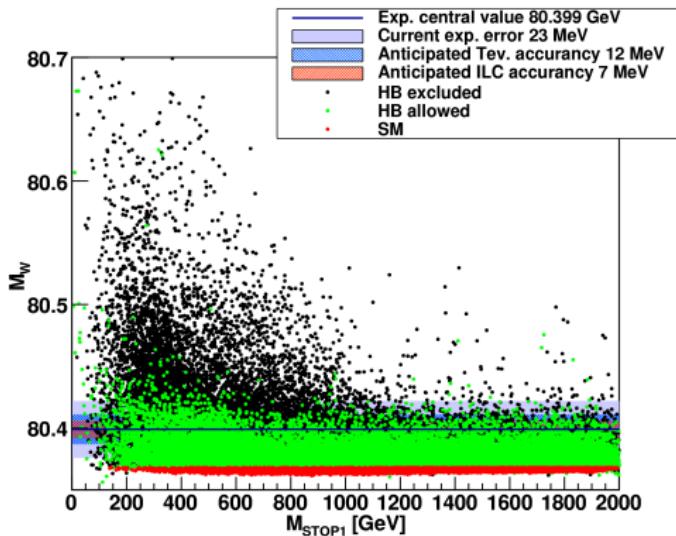
■ Complete Δr^{MSSM} agrees with previous result [Heinemeyer, Hollik, Stöckiger, Weber, Weiglein '06]


Sfermion sector

- > $\mathcal{O}(\alpha\alpha_s)$ contributions up to 15 MeV (\gtrsim exp. accuracy at Tevatron)
- > Can enter with both signs
- > Important for a precise M_W prediction!

Chargino and neutralino sector

- Contribution to M_W from one-loop diagrams
- For small scale input values:
 - Chargino and neutralino sector contribution up to 28 MeV
 - Contribution larger than current experimental error


Δp Approximation

- Corresponds to T parameter of the S,T,U parameters
- Difference up to 10 MeV
- Not sufficient for small SUSY mass range

Higgs Sector

- Higgs sector contribution up to about 20 MeV

M_W in the MSSM

Parameter Scan

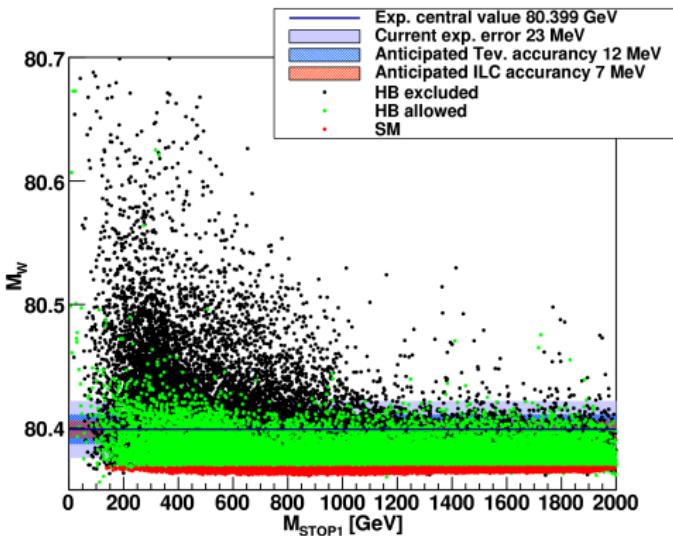
$$ML = 100 \dots 2000 \text{ GeV}$$

$$MQ_{12} = 100 \dots 2000 \text{ GeV}$$

$$MQ_3 = 100 \dots 2000 \text{ GeV}$$

$$A_t = -2 MQ_3 \dots 2 MQ_3$$

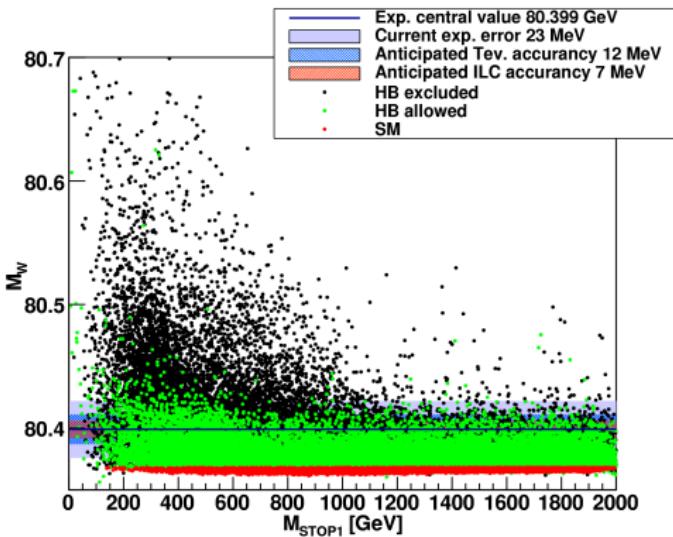
$$\mu = -2000 \dots 2000 \text{ GeV}$$


$$\tan \beta = 1.1 \dots 60$$

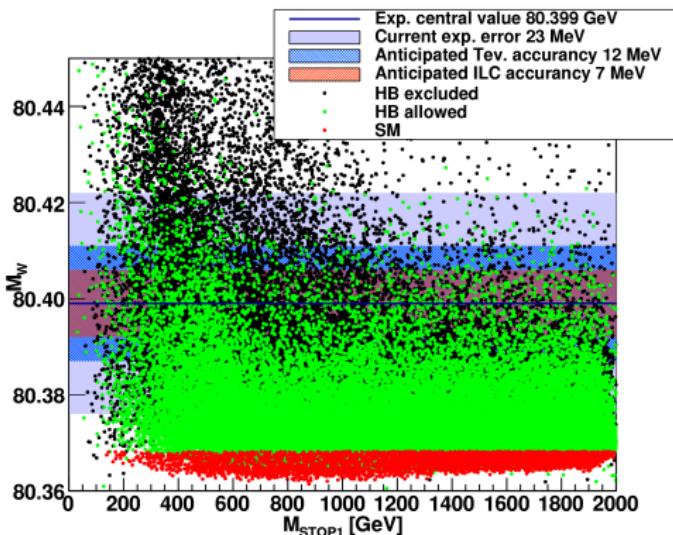
$$m_{\tilde{g}} = 200 \dots 1500 \text{ GeV}$$

$$m_A = 90 \dots 1000 \text{ GeV}$$

$$M_2 = 100 \dots 2000 \text{ GeV}$$

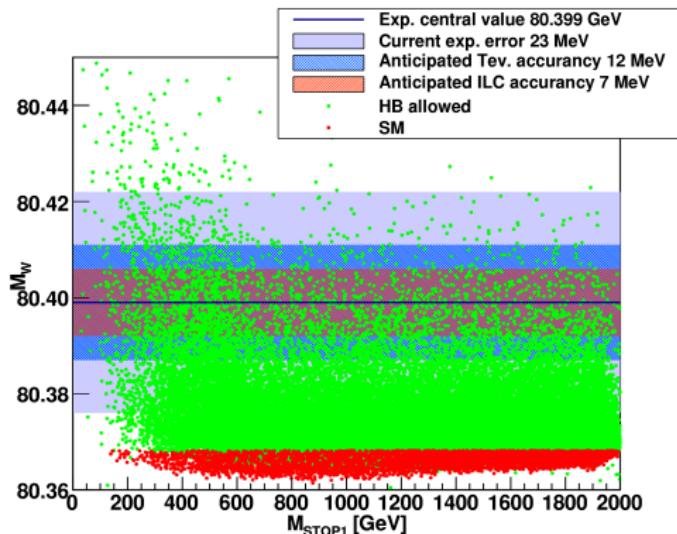

M_W in the MSSM

Imposed Limits


- **Chargino mass limit:**
 $m_{\chi^\pm} > 94$ GeV
[The DELPHI Collaboration: J. Abdallah, et al, 2003]
- **MSSM Higgs mass limits from HiggsBounds 3.4.0.beta:**
Exclusion from Higgs searches at LEP, Tevatron and the LHC
- **SM Higgs mass limit:**
 $m_{h_{SM}} > 114.4$ GeV
[The LEP Working Group for Higgs boson searches, 2003]

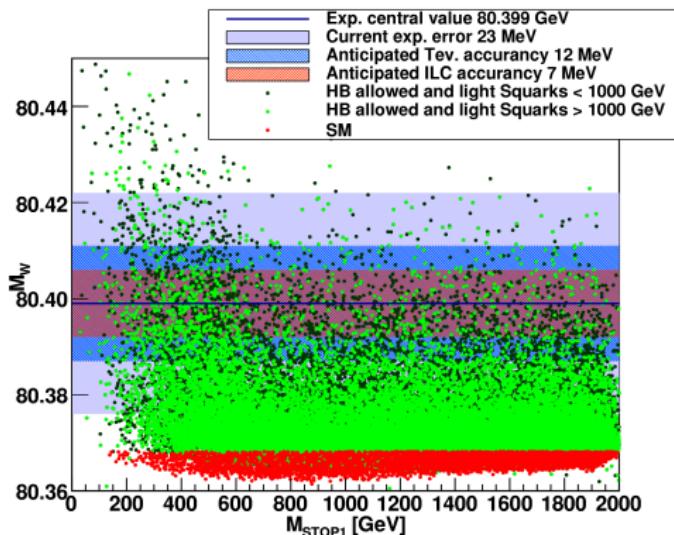
M_W in the MSSM

- W boson in the MSSM generally heavier than in the SM
- M_W is highly sensitive to quantum effects of SUSY particles
- Large SUSY contributions: $M_W > 80.5$ GeV possible
BUT: Very large splitting in \tilde{t}, \tilde{b} sector. Close to experimental boundaries!


M_W in the MSSM

Impact of Higgs bounds

- Most points with very large M_W ruled out by HiggsBounds
- Many points with M_W up to M_W^{exp} and higher are allowed by Higgs searches
- Large SUSY contributions possible
- Improved experimental accuracy
⇒ Sensitivity to SUSY effects increases
- SUSY favoured over the SM by the current experimental data


M_W in the MSSM

Impact of Higgs bounds

- Most points with very large M_W ruled out by HiggsBounds
- Many points with M_W up to M_W^{exp} and higher are allowed by Higgs searches
- Large SUSY contributions possible
- Improved experimental accuracy
⇒ Sensitivity to SUSY effects increases
- SUSY favoured over the SM by the current experimental data

M_W in the MSSM: Potential impact of LHC searches

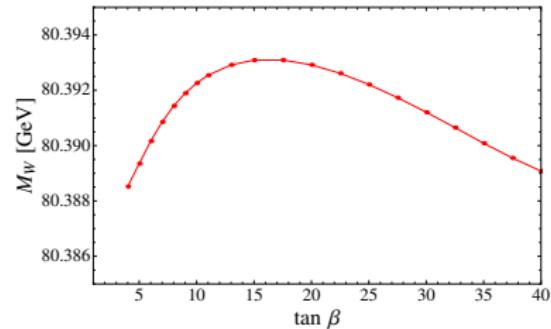
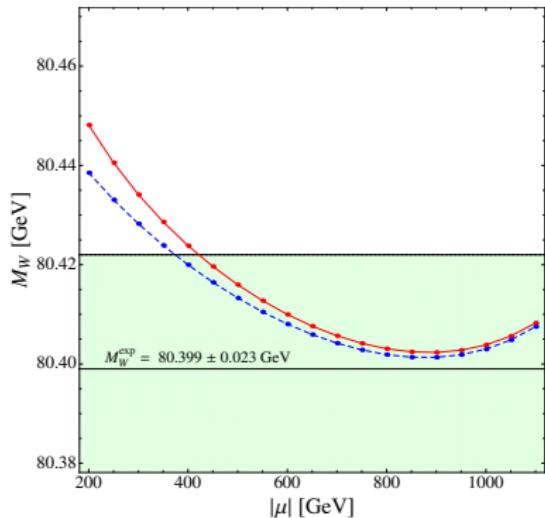
Effect of LHC searches on M_W

- **Sizable SUSY contribution to M_W are still possible if squarks up to 1000 GeV (or higher) are ruled out by LHC**
- **Impact of additional limits on stops and sbottoms would be small**
- **If Squarks are heavy: Sizeable SUSY contributions from Slepton, Higgs and Chargino, Neutralino sector**

Conclusion and Outlook

Δr Calculation

- Complete one-loop calculation of M_W in the MSSM
 - + Incorporation of higher order corrections
- Most precise and general M_W prediction
- Framework that allows easy extensions to other models



M_W in the MSSM

- Contributions from all SUSY sectors can be sizable
- M_W prediction in MSSM in general higher than in SM
- M_W values around M_W^{exp} possible in the MSSM and allowed by Higgs searches
 - ⇒ Experimental value favours non-zero SUSY contribution
- The LHC limits from squark searches hardly constrain the possible range of M_W further

Back up

Dependence on other SUSY parameters

Sfermion mixing parameter

$$X_t = A_t - \mu \frac{1}{\tan \beta}$$

$$X_b = A_b - \mu \tan \beta$$

Resummation formula

One-loop formula

- One-loop result dominated by fermionic contributions

$$\Delta r = \Delta\alpha - \frac{c_W^2}{s_W^2} \Delta\rho + \Delta r_{rem}$$

- $\Delta\alpha$: Shift of the fine structure constant
- $\Delta\rho = \frac{\Sigma_T^Z(0)}{M_Z^2} - \frac{\Sigma_T^W(0)}{M_W^2}$
 - Correction to ρ parameter, which describes the ratio between neutral and charged weak current
 - **Sensitive to mass splitting!**

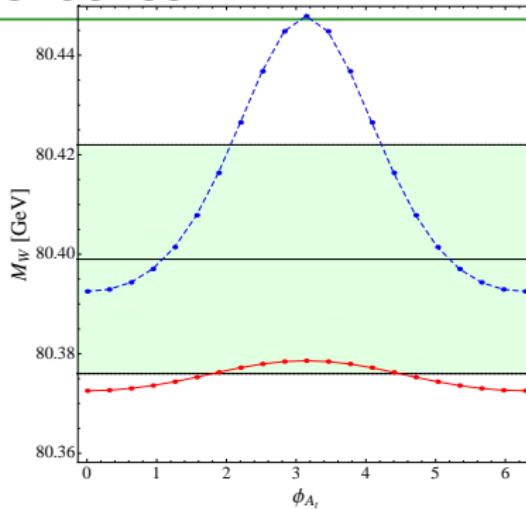
Leading reducible two-loop corrections

- Resummation formula:

$$1 + \Delta r = \frac{1}{(1 - \Delta\alpha)(1 + \frac{c_W^2}{s_W^2} \Delta\rho) - \Delta r_{rem}}$$

- Includes $(\Delta\alpha)^2$, $(\Delta\rho)^2$, $\Delta\alpha\Delta\rho$ correctly

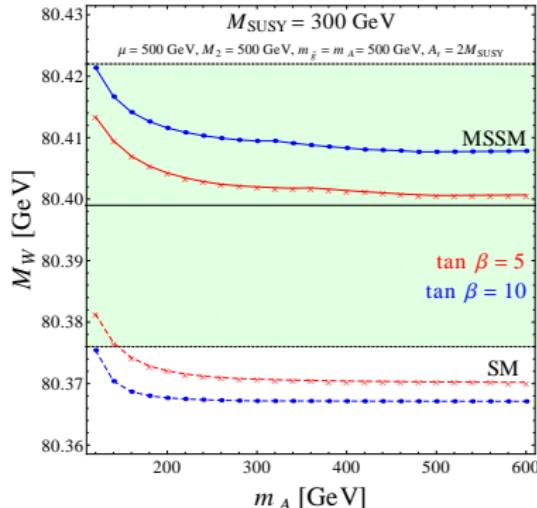
$\Delta\rho$ Contribution


$$\Delta\rho^{\text{SM}} = \frac{3}{16\pi s_W^2 c_W^2} \left(\frac{2G_\mu s_W^2 M_W^2}{\sqrt{2}\pi} \right) \frac{1}{M_Z^2} F_0(m_t^2, m_b^2) = \frac{3G_\mu}{8\sqrt{2}\pi^2} F_0(m_t^2, m_b^2)$$

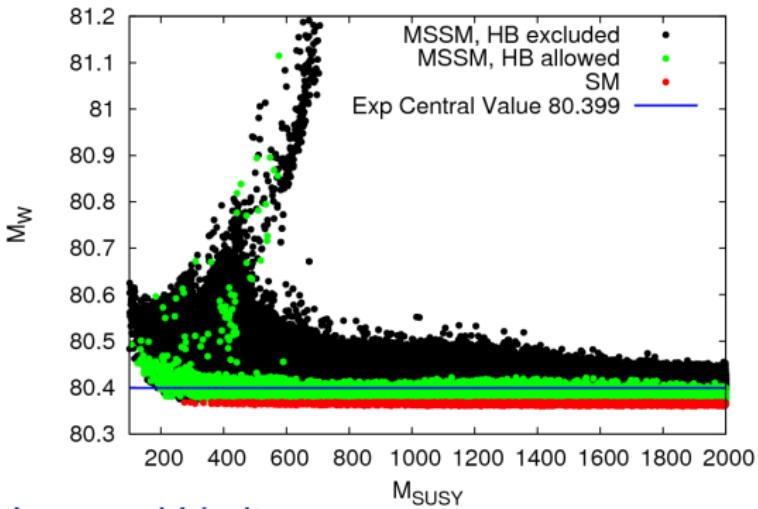
$$\begin{aligned} \Delta\rho^{\text{SUSY}} = & \frac{3G_\mu}{8\sqrt{2}\pi^2} \left(-\sin^2\theta_{\tilde{t}} \cos^2\theta_{\tilde{t}} F_0(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2) - \sin^2\theta_{\tilde{b}} \cos^2\theta_{\tilde{b}} F_0(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2) \right. \\ & + \cos^2\theta_{\tilde{t}} \cos^2\theta_{\tilde{b}} F_0(m_{\tilde{t}_1}^2, m_{\tilde{b}_1}^2) + \cos^2\theta_{\tilde{t}} \sin^2\theta_{\tilde{b}} F_0(m_{\tilde{t}_1}^2, m_{\tilde{b}_2}^2) \\ & \left. + \sin^2\theta_{\tilde{t}} \cos^2\theta_{\tilde{b}} F_0(m_{\tilde{t}_2}^2, m_{\tilde{b}_1}^2) + \sin^2\theta_{\tilde{t}} \sin^2\theta_{\tilde{b}} F_0(m_{\tilde{t}_2}^2, m_{\tilde{b}_2}^2) \right) \end{aligned}$$

with

$$F_0(x, x) = 0 \quad \text{and} \quad F_0(x, 0) = x$$


Full Phase dependence

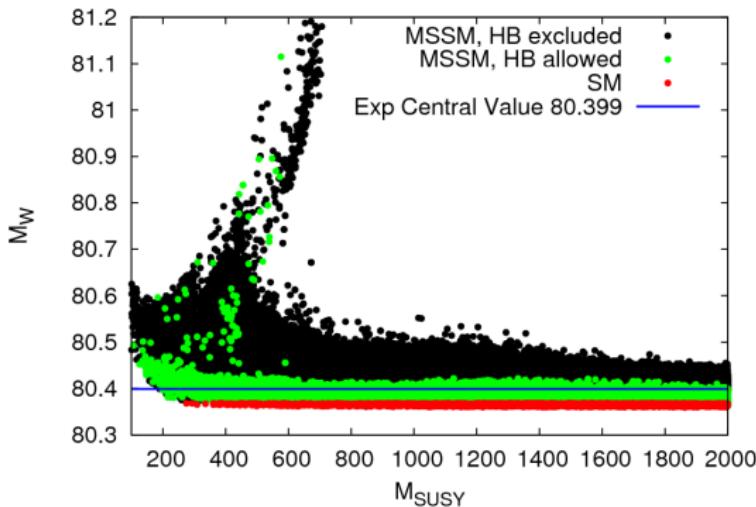
Phase dependence


- M_W as a function ϕ_{A_t} for two values, $M_{\text{SUSY}} = 300$ GeV (blue, dashed line) and $M_{\text{SUSY}} = 600$ GeV (red, solid line)
- The other SUSY parameters are: $A_t = 2M_{\text{SUSY}}$, $M_2 = 500$ GeV, $m_{\tilde{g}} = 500$ GeV, $\mu = 500$ GeV, $m_A = 500$ GeV, $\tan \beta = 10$

Higgs Sector, Comparison SM and MSSM

- Higgs masses include one- and two-loop corrections (FeynHiggs)
- $m_{h_{\text{SM}}}$ set to mass of the MSSM Higgs that couples SM-like
 - > SM prediction depends on SUSY parameters
- **MSSM prediction is higher than the SM prediction**
- Higgs sector contribution up to about 20 MeV (mainly effect of SM corrections)

M_W in the MSSM

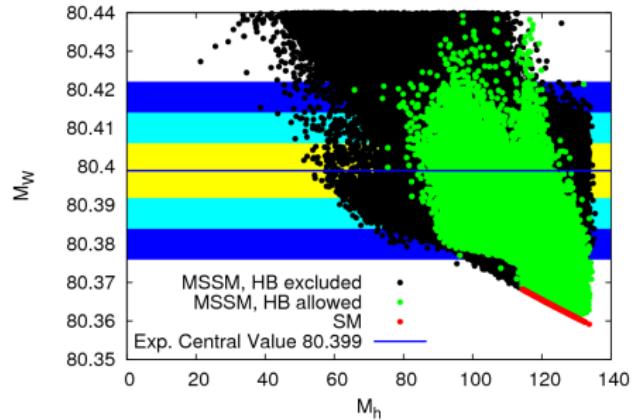
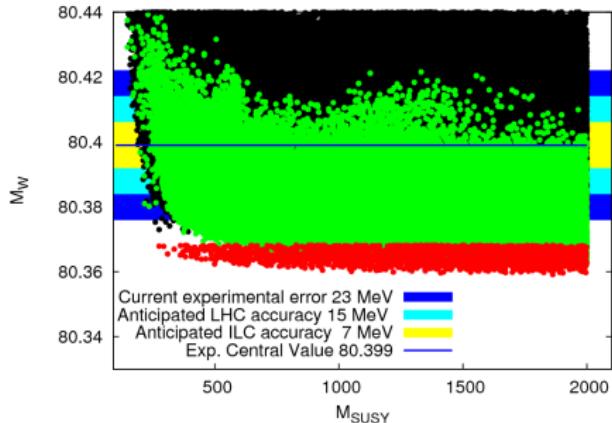

Imposed Limits

- Chargino mass limit: $m_{\chi^\pm} > 94$ GeV [The DELPHI Collaboration: J. Abdallah, et al, 2003]
- MSSM Higgs mass limits from HiggsBounds 3.1.0.beta: Exclusion from Higgs searches at LEP, Tevatron and the LHC
- SM Higgs mass limit: $m_{h_{\text{SM}}} > 114.4$ GeV [The LEP Working Group for Higgs boson searches, 2003]

Parameter Scan

$M_{\text{SUSY}} = 100 \dots 2000$ GeV
 $A_t = -2 M_{\text{SUSY}} \dots 2 M_{\text{SUSY}}$
 $\mu = -2000 \dots 2000$ GeV
 $\tan \beta = 1.1 \dots 60$
 $m_{\tilde{g}} = 200 \dots 1500$ GeV
 $m_A = 90 \dots 1000$ GeV
 $M_2 = 100 \dots 2000$ GeV

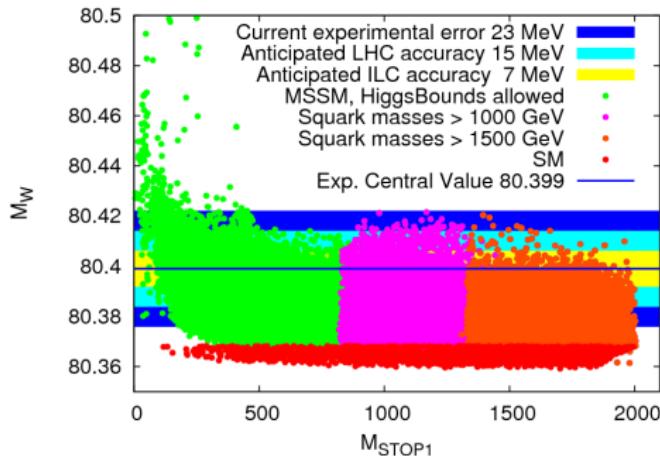
M_W in the MSSM

Parameter Scan

- $M_{\text{SUSY}} = 100 \dots 2000 \text{ GeV}$
- $A_t = -2 M_{\text{SUSY}} \dots 2 M_{\text{SUSY}}$
- $\mu = -2000 \dots 2000 \text{ GeV}$
- $\tan \beta = 1.1 \dots 60$
- $m_{\tilde{g}} = 200 \dots 1500 \text{ GeV}$
- $m_A = 90 \dots 1000 \text{ GeV}$
- $M_2 = 100 \dots 2000 \text{ GeV}$

- W boson in the MSSM generally heavier than in the SM
- M_W is highly sensitive to quantum effects of SUSY particles
- Large SUSY contributions: $M_W > 81 \text{ GeV}$ possible
BUT: Very large splitting in \tilde{t}, \tilde{b} sector. Close to experimental boundaries!


M_W in the MSSM: Impact of Higgs bounds

Effect of Higgs bounds on M_W

- Most points with very large M_W ruled out by Higgs Bounds
- Many points with M_W up to M_W^{exp} and higher are allowed by Higgs searches
- SUSY contributions of more than 2σ possible
- Improved experimental accuracy \implies Sensitivity to SUSY effects increases
- SUSY favoured over the SM by the current experimental data**

M_W in the MSSM: Potential impact of LHC searches

Effect of LHC searches on M_W

- Sizable SUSY contribution to M_W are still possible if squarks up to 1000 GeV or higher are ruled out by LHC
- Impact of additional limits on stops and sbottoms would be small