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Thermal evolution of WIMPs

Dark matter and WIMPs

Evidence for Dark Matter is abundant Properties
non-baryonic
collisionless
electrically neutral
cold
ΩCDM = 0.233±0.013

Well motivated candidate:
Weakly
Interacting
Massive
Particle
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Thermal evolution of WIMPs

The WIMP miracle and relic density

Evolution of WIMP number density
1st moment of Boltzmann
equation:

dnχ
dt

+3Hnχ = −〈σvrel〉
(

n2
χ − n2

χ,eq

)

‘Freeze out’ or
Chemical decoupling

when annihilation rate falls behind
expansion rate.

G. Jungman et al. JPhysics Reports 267 (1996) 195-373 221 

Using the above relations (H = 1.66g$‘2 T 2/mpl and the freezeout condition r = Y~~(G~z~) = H), we 
find 

(n&)0 = (n&f = 1001(m,m~~g~‘2 +JA+) 

N 10-S/[(m,/GeV)((~A~)/10-27 cm3 s-‘)I, (3.3) 

where the subscript f denotes the value at freezeout and the subscript 0 denotes the value today. 
The current entropy density is so N 4000 cmm3, and the critical density today is 
pC II 10-5h2 GeVcmp3, where h is the Hubble constant in units of 100 km s-l Mpc-‘, so the 
present mass density in units of the critical density is given by 

0,h2 = mxn,/p, N (3 x 1O-27 cm3 C1/(oAv)) . (3.4) 

The result is independent of the mass of the WIMP (except for logarithmic corrections), and is 
inversely proportional to its annihilation cross section. 

Fig. 4 shows numerical solutions to the Boltzmann equation. The equilibrium (solid line) and 
actual (dashed lines) abundances per comoving volume are plotted as a function of x = m,/T 
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Fig. 4. Comoving number density of a WIMP in the early Universe. The dashed curves are the actual abundance, and 
the solid curve is the equilibrium abundance. From [31]. 

[Jungman, Kamionkowski, Griest, ’96]

Relic density today

Ωχ ∼
3× 10−26cm3/s

〈σvrel〉
∼ O(1) for WIMPs
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Thermal evolution of WIMPs

Chemical vs. Kinetic decoupling

!

!

SM

SM

Chemical decoupling
annihilation
decreases nχ
nχ Boltzmann suppressed
xCD =

mχ
TCD
∼ 25

! !

SM SM

Kinetic decoupling
scattering
keeps DM in thermal
equilibrium with heat bath
SM particles abundant
xKD > xCD
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Thermal evolution of WIMPs

Kinetic decoupling and WIMP temperature

Define WIMP ‘temperature’

Tχ ≡
gχ

3mχnχ

∫
d3p

(2π)3
~p2f (~p)

Evolution of y ≡ mχTχs−2/3

2nd moment of Boltzmann equation:

y ′

y
= −

(
1− x

3
g′∗S
g∗S

)
2mχc(T )

Hx

(
1− yeq

y

)

TΧ µ a-2

T Χ
=

T

Tkd
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Decoupling almost
instantaneous:

xχ '
{

x x < xKD
x2/xKD x ≥ xKD
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Thermal evolution of WIMPs

The smallest protohaloes

Free streaming of WIMPs after
kinetic decoupling

washes out density
fluctuations on small
scales
(like baryonic oscillations)
translates to mass-scale
Mcut of smallest
gravitationally bound
objects
depends strongly on
particle physics
⇒ not necessarily
Mcut ∼ 10−6M� !

Particle DM and small-scale structure 9

!
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Figure 3. The left panel shows the exponential cutoff scales associated to the main

damping mechanisms of the matter power spectrum after kinetic decoupling, viz. free

streaming and the effect of acoustic oscillations, respectively; for models above (below)

the dashed line, the former (latter) mechanism thus provides a stronger suppression of

the power spectrum. In the right panel, the cutoff mass resulting from the dominating

of these two independent effects is plotted against the neutralino mass, indicating the

typical size of the smallest protohalos to be formed.

cutoff Mcut in the power spectrum is thus, rather, given by Mcut = max [Mfs, Mao]; the

possible range of Mcut is displayed in the right panel of Fig. 3 as a function of mχ.

For very small values of Mcut, corresponding to large Tkd, one might wonder whether

the QCD transition could leave an imprint on the power spectrum. In fact, if it is first

order, the sound speed vanishes during the transition and density perturbations fall

freely, potentially leading to the production of DM clumps with masses of 10−20 to

10−10M" [8]. However, the corresponding enhancement factor in the CDM density

fluctuations is only between 2 (from a lattice fit) and 20 (using the bag model) at scales

of ∼ 10−15M" and significantly smaller at larger scales; this has to be compared to the

exponential suppression of power below Mcut due to the damping mechanisms discussed

here. For the smallest cutoff scales shown in Fig. 3, Mcut ! 10−10M", the actual cutoff

mass might thus be slightly, but certainly not very much, smaller than indicated –

depending on the details of the QCD phase transition.

Following the paradigm of hierarchical structure formation, the smallest scales,

and thus the scales closest to the cutoff, typically enter the non-linear regime first. The

smallest gravitationally bound objects to be formed in the universe are in that case also

the first; protohalos with a mass of around Mcut. This behaviour has been confirmed

numerically, where these protohalos could be followed until a redshift of z ∼ 26 [28].

The range of expected minimal protohalo masses displayed in Fig. 3 is only slightly

smaller than what was found earlier [29] using an order-of-magnitude estimate for Tkd
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Leptophilic model

Leptophilic model

Motivation
Lepton excess in PAMELA (e+)

Problems
need σ larger than allowed by relic density today
large annihilation into high energy leptons
small annihilation into quarks (no excess antiprotons seen)

Concept [Arkani-Hamed et al., 2009]

heavy DM particle χ (mχ = 100 GeV - 5 TeV)
χ only couples to light boson φ (mφ = 100 MeV - 5 GeV),
no direct coupling to SM
small mφ prohibits decay into (heavy) hadronic channels
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Leptophilic model

Sommerfeld enhancement

Generic mechanism in non-relativistic particle annihilation

repeated exchange of virtual
particles (ladder diagram)
enlarges ‘bare’ cross section by
enhancement factor S

σ = Sσ0

Resonances expected near bound
states

S ∝ 1/v off-resonance
S ∝ 1/v2 on-resonance

χ̄

χ

φ

φ

φ

mφ ≈ 0.1 − 1GeV

...

Abbildung 3.3: Beispiel eines Leiterdiagramms der Annihilation χχ̄ → φφ

woraus ersichtlich wird, dass sich der SF mit l = 0 vereinfacht zu

Sk =

����
Rk,l=0(0)

k

����
2

. (3.18)

Substituiert man des Weiteren in (3.16) χk ≡ rRk,l=0, dann führt dies auf die
eindimensionale Schrödinger-Gleichung

− 1

2m

d2

dr2
χk + V (r)χk =

k2

2m
χk, (3.19)

zusammen mit den Randbedingungen

χ(0) = 0 (3.20)

und
χ(r) → sin(kr + δ) (3.21)

für r → ∞. Wie man durch Ableiten der Substitutionsvorschrift sieht, ”verein-

facht“ sich damit auch der SF zu

S =

����
1

k

dχ

dr
(0)

����
2

. (3.22)

Zur Lösung der Schrödinger-Gleichung und der Berechnung des SFs müssen wir
nun das Wechselwirkungspotential aus dem postulierten Hamiltonian (3.1) be-

stimmen. Dazu macht man sich klar, dass der Sommerfeld-Effekt auf dem Niveau
der Quantenfeldtheorie durch Leiterdiagramme erklärt wird (siehe Abb. 3.3),
bei denen mehrfach Wechselwirkungsteilchen zwischen dem DM-Teilchen und
dessen Antiteilchen ausgetauscht werden. Der Vergleich der nichtrelativistischen
Näherung eines solchen “Streuprozesses“ von χ + χ̄ mit der Streuamplitude in

der Bornschen Näherung führt dann auf ein Wechselwirkungspotential, welches
gerade das Yukawa-Potential ist [41]:

V (r) = − α

2r
e−mφr, (3.23)

43

From this result, we expect that the Sommerfeld en-
hancement will exhibit a series of resonances for spe-
cific values of the particle mass spaced in a 1 : 4 : 9 : ...
fashion. The behaviour of the cross section close to
the resonances can be better understood by approx-
imating the electroweak potential by a well poten-
tial, for example: V (r) = −αmVθ(R − r), where
R = m−1

V is the range of the Yukawa interaction, and
the normalization is chosen so that the well poten-
tial roughly matches the original Yukawa potential at
r = R. The external solution satisfying the bound-
ary conditions at infinity is simply an incoming plane
wave, ψout(r) ∝ eikoutr, with kout = mβ. The inter-
nal solution is: ψin(r) = Aeikinr + Be−ikinr, where

kin =
√

k2
out + αmmV # √

αmmV (the last approxi-
mate equality holds because β % β∗). The coefficients
A and B are as usual obtained by matching the wave
function and its first derivative at r = R; then the
enhancement is found to be:

S =

[
cos2 kinR +

k2
out

k2
in

sin2 kinR

]−1

. (7)

When cos kinR = 0, i.e., when
√

αm/mV = (2n +
1)π/2, the enhancement assumes the value k2

in/k2
out #

β∗2/β2 & 1. This is however cut off by the finite
width of the state.

In summary, the qualitative features that we expect
to observe are
i) at large velocities (β & α) there is no enhancement,
S # 1;
ii) in the intermediate range β∗ % β % α, the en-
hancement goes like 1/v: S # πα/β, this value being
independent of the particle mass;
iii) at small velocities (β % β∗), a series of resonances
appear, due to the presence of bound states. Close
to the resonances, S # (β∗/β)2. In this regime, the
enhancement strongly depends on the particle mass,
because it is this that determines whether we are close
to a resonance or not. Similar results have been inde-
pendently obtained in Ref. [16].

We show the result of the numerical integration of
Eq. (2) in Figure 2, where we plot the enhancement
S as a function of the particle mass m, for different
values of β. We choose specific values of the boson
mass mV = 90 GeV and of the gauge coupling α =
α2 # 1/30. These values correspond to a particle
interacting through the exchange of a Z boson.

We note however that, as can be seen by the form
of the equation, the enhancement depends on the bo-
son mass only through the combination ε = mV/m,
so that a different boson mass would be equivalent
to rescaling the abscissa in the plot. Moreover, the
evolution of the wave function only depends on the
two quantities α/ε and β/ε, so that a change α → α′

in the gauge coupling would be equivalent to: β →
β′ = α′

α β, ε → ε′ = α′

α ε. This shows that Fig. 2 does
indeed contain all the relevant information on the be-
haviour of the enhancement S.

We see that the results of the numerical evaluation
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FIG. 2: Sommerfeld enhancement S as a function of
the dark matter particle mass m, for different values of
the particle velocity. Going from bottom to top β =
10−1, 10−2, 10−3, 10−4, 10−5.

agree with our qualitative analysis above. When β =
10−1 (bottom curve), we are in the β > α # 3 × 10−2

regime and there is basically no enhancement. The
next curve β = 10−2 is representative of the β >∼ β∗

regime, at least for m larger than a few TeV. The en-
hancement is constant with the particle mass and its
value agrees well with the expected value πα/β # 10.
The drop of the enhancement in the mass region be-
low ∼ 3 TeV is due to the fact that here β <∼ β∗,
and that there are no resonances for this value of the
mass. Decreasing β again (top three curves, corre-
sponding to β = 10−3, 10−4, 10−5 from bottom to
top) we observe the appearance of resonance peaks.
The first peak occurs for m = m = 4.5 TeV, so that
expression (6) based on the analogy with the hydro-
gen atom overestimates the peak position by a factor
2. However, the spacing between the peaks is as ex-
pected, going like n2, as the next peaks occur roughly
at m = 4, 9, 16 m. The height of the first peak agrees
fairly well with its expected value of (β∗/β)2. The
other peaks are damped; this is particularly evident
for β = 10−3, and in this case it is due to the fact that
β∗ decreases as m increases, so that for m ∼ 100 TeV
we return to the non-resonant, 1/β behaviour, and the
enhancement takes the constant value πα/β # 100.

Complementary information can be extracted from
the analysis of the upper panel of Fig. 3, where we
plot the Sommerfeld enhancement as a function of β,
for different values of the particle mass. Far from
the resonances, the enhancement factor initially grows
as 1/β and then saturates to some constant value.
This constant value can be estimated by solving the
Schrödinger equation with β = 0. We find that a
reasonable order of magnitude estimate is given by
Smax ∼ 6α/ε; the corresponding value of β ∼ 0.5ε.
The 1/β behaviour holds down to smaller velocities
for larger particle masses, leading to larger enhance-
ment factors. However, when the particle mass is close
to a resonance, S initially grows like 1/β but at some
point the 1/β2 behaviour ”turns on”, leading to very
large values of the boost factor, until this also satu-
rates to some constant value.

[Lattanzi & Silk, 2009]
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Leptophilic model

Kinetic decoupling for a leptophilic model

PRELIMINARY!
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m Χ # 1 TeV
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top to bottom:

mφ(MeV) =
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Mcut/M� ≈ 10−12 to 1
See also [Pinzke, Pfrommer, Bergstrom, 2011]
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Evolution of DM after Kinetic Decoupling

Reentering an era of annihilation I

Evolution of relic density Y =
nχ
s

dY
dx

= −λx−2
(

Y 2 − Y 2
eq

)

where 〈σvrel〉 = σ0 for s-waves, and λ ∝ σ0

Include Sommerfeld factor

S ∼ 1/v ∼ x1/2
χ

After kinetic decoupling:
xχ ' x2/xKD

⇒ S ∼ x

5
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!
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 Y
 - 

Y
EQ

x = m/T

Tf = Tk

Tf = 10Tk

no Sommerfeld enhancement

Sommerfeld enhancement

No kinetic decoupling
Y"

Y"

Tf = 100Tk

FIG. 4: The effect of kinetic decoupling on the evolution of
the relic particle abundance for the case of s-wave annihilation
for a 500 GeV mass particle with σ0 = 3 × 10−26 cm3 s−1, in
the limit where the Sommerfeld enhancement scales as 1/v.
Horizontal lines give our analytic estimates of the final relic
abundances.

nihilations at Tcutoff . We find

Y
(k)
∞

Y∞
= (Tf/Tk)1/2(

√
Tf

Tk
− 1 +

1

2
ln(Tk/Tcutoff))−1.

(22)
The effect of kinetic decoupling with Sommerfeld-

enhanced annihilations is illustrated numerically in Figs.
4 and 5. In Fig. 4, we show the evolution of the parti-
cle abundance for the case we have just considered (1/v
enhancement), while Fig. 5 shows the case α = 0.01 (of
course, our analytic estimate, equation (22), does not ap-
ply in the latter case.) Fig. 5 illustrates the fact that a
value of the coupling for Sommerfeld enhancement can
be small enough to produce a negligible change in the
relic abundance without kinetic decoupling, but it can
have a large effect once kinetic decoupling occurs.

III. DISCUSSION

We have confirmed that the standard analytic approx-
imation for the relic particle abundances can be applied,
with the appropriate modification, to the case of s-wave
relic abundances in the presence of a Sommerfeld en-
hanced interaction, although the error in applying this
approximation to the case of Sommerfeld-enhanced s-
wave annihilations (∼ 10%) is significantly larger than
in the s-wave case without Sommerfeld enhancement (<
1%). We have also determined the range of the coupling
α over which Sommerfeld annihilation can be either ne-
glected in the calculation of relic densities (as suggested
in [15]) or treated purely as a 1/v enhancement to the
annihilation rate (as in [14]).

When kinetic decoupling occurs, it affects the
relic abundances for both p-wave annihilations and

 1e-14
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 1e-12

 1e-11

101 102 103 104 105 106

!
 =

 Y
 - 

Y
EQ

x = m/T

Sommerfeld enhancement # = .01

no Sommerfeld enhancement no kinetic decoupling

Tf = 1000TkTf = 100Tk

Tf = 10Tk

Tf = Tk

FIG. 5: As Fig. 4, for Sommerfeld-enhancement coupling of
α = 0.01, a value for which the Sommerfeld effect by itself is
negligible without kinetic decoupling. Note the strong effect
of kinetic decoupling upon the relic particle abundances.

Sommerfeld-enhanced s-wave annihilations. In the for-
mer case, the effect is generally very small unless kinetic
decoupling occurs at nearly the same epoch as chemi-
cal decoupling. For Sommerfeld-enhanced s-wave decou-
pling, the effect is quite large, and we have provided an
analytic estimate of this effect.

Finally, we note that another, quite different mecha-
nism to produce a velocity-dependent cross section is for
a pole to lie near twice the mass of the annihilating par-
ticle [12]. The effect is most striking when the pole lies
slightly below twice the particle mass [24]. In this case,
just as for Sommerfeld-enhanced annihilation following
kinetic decoupling, the annihilations do not freeze out
until the velocity drops below a cut-off scale in the model.
Since the relic abundance in his model is set by this cut-
off scale, one would not expect a large change in the final
relic abundance if the annihilating particles also kinet-
ically decoupled. However, a more detailed calculation
likes outside the scope of this paper.
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[Dent, Dutta, Scherrer, 2010]
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Evolution of DM after Kinetic Decoupling

Reentering an era of annihilation II

More general approach
For a full understanding of evolution of Tχ and nχ in this regime,
solve system of coupled differential equations:

Y ′

Y
= −

1− x
3

g′∗S
g∗S

Hx
2
gχ

sY 〈σvrel〉|x=m2
χ/(s2/3y)

y ′

y
= −

1− x
3

g′∗S
g∗S

Hx

[
2mχc(T )

(
1− yeq

y

)

− 2
gχ

Ys
(
〈σvrel〉 − 〈σvrel〉2

)
x=m2

χ/(s2/3y)

]
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Summary and outlook

Conclusions

Summary
Chemical decoupling 6= kinetic decoupling
Kinetic decoupling temperature TKD translates to a small-scale
cutoff Mcut for the protohalo mass, which is model dependent.
DM annihilations can continue after kinetic decoupling when the
cross section is Sommerfeld enhanced.

Outlook
Paper coming soon...

Thank you for your attention!
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