The

Massless String Spectrum on AdS₃×S³ from the Supergroup

Sebastian Gerigk ETH Zurich

based on work with M. Gaberdiel (arXiV:1107.2660)

Cosmology Meets Particle Physics: Ideas & Measurements, Hamburg, 2011

Why String Theory on AdS₃?

- Superstring Theory on AdS-spaces is conjectured to be dual to conformal field theories.
- In pure NS-backgrounds, there exists a well-established RNS-formulation of string theory on AdS₃×S³ in terms of a (world sheet)-supersymmetric SL(2)×SU(2) WZW model. [Giveon, Kutasov, Seiberg `98]
 - [Kutasov, Seiberg `99]
- ★ Formulation including RR-flux is desirable.
 ⇒ Target space supersymmetric formulation is needed.
 ⇒ Need to find a "superspace-version" of SL(2)×SU(2) ≃ AdS₃×S³!

Lie Superalgebras

 A Lie superalgebra is given by a Lie algebra g⁽⁰⁾ and a set of fermionic generators g⁽¹⁾ such that

$$\left[\mathfrak{g}^{(0)},\mathfrak{g}^{(1)}
ight]\subset\mathfrak{g}^{(1)},\qquad\left\{\mathfrak{g}^{(1)},\mathfrak{g}^{(1)}
ight\}\subset\mathfrak{g}^{(0)}$$

[Kac `77]

- In other words, the fermionic generators form a representation of g⁽⁰⁾ with respect to the adjoint action.
- The anticommutator needs to be compatible with the g⁽⁰⁾-action.
 (generalised Jacobi identity)

$$[a, \{b, c\}] = \{[a, b], c\} + \{b, [a, c]\}$$

Adding SUSY to AdS₃×S³

* As manifolds we can locally identify $AdS_3 \times S^3$ with (a real form of) the semisimple Lie algebra $\mathfrak{sl}(2) \oplus \mathfrak{sl}(2)$.

- * This Lie algebra allows a consistent supersymmetric structure, *i.e.* it appears as the bosonic subalgebra of a Lie superalgebra.
- * The resulting Lie superalgebra is known as $\mathfrak{psl}(2|2)$.

Superstrings on AdS₃×S³

[Berkovits, Vafa, Witten `99]

- The *hybrid formulation* gives a description of the superstring that is target space supersymmetric in 6 dimensions.
- * Superstrings on AdS₃×S³ (including RR-flux) are described by a
 - a non-linear sigma-model on PSL(2|2)
 - * + an (twisted) N=2 superconformal structure on the world sheet.
- The WZW-point corresponds to the case of pure NSNS-flux.
 topic of this talk! ✓

The Path to the Physical States

- * <u>Goal</u>: Give a description of the physical string spectrum in the hybrid formulation.
- * <u>1st Step:</u> Understand the representations of $\mathfrak{psl}(2|2)$.
- * <u>2nd Step:</u> Determine the space of states of the PSL(2|2) WZW-model.
- * <u>3rd Step:</u> Find the cohomology of physical string states.
- * Today, we will restrict ourselves to the massless sector of string states!

Representations: Kac-Modules

* $\mathfrak{psl}(2|2)$ has a decomposition of the form $\mathfrak{g} = \mathfrak{g}^{(0)} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_1$ annihilation operators

creation operators

[Kac `77]

- * First take a representation $\mathcal{V}(j_1, j_2)$ of the bosonic subalgebra. Note: We are interested in representations with $j_1 < 0, j_2 \ge 0$.
- * Let all elements in \mathfrak{g}_1 act trivially on $\mathcal{V}(j_1, j_2)$.
- * The Kac-module $\mathcal{K}(j_1, j_2)$ is obtained by treating \mathfrak{g}_{-1} as fermionic creation operators.
- * Warning: Kac-modules may not be fully reducible!

Atypical Kac-Modules

- * For $\mathfrak{psl}(2|2)$, Kac-Modules are reducible if the second Casimir vanishes, [Kac `77] $j_1 + j_2 + 1 = 0$. [Götz, Quella, Schomerus `07]
- * These are referred to as *atypical*, and denoted $\mathcal{K}(j) \equiv \mathcal{K}(-j-1,j)$.

$$\mathcal{L}(j)$$

$$\mathcal{K}(j): \qquad \mathcal{L}(j - \frac{1}{2}) \qquad \mathcal{L}(j + \frac{1}{2}) \qquad \text{for } j \ge 1$$

$$\mathcal{L}(j)$$

Projective Covers

- * The *projective cover* $\mathcal{P}(j_1, j_2)$ of an irreducible representation $\mathcal{L}(j_1, j_2)$ is in some sense the largest indecomposable representation <u>covering</u> $\mathcal{L}(j_1, j_2)$.
- * $\mathcal{P}(j_1, j_2)$ covers every representation that itself is covering $\mathcal{L}(j_1, j_2)$.
- * In particular, $\mathcal{P}(j_1, j_2)$ covers the Kac-module $\mathcal{K}(j_1, j_2)$.

The Projective Cover $\mathcal{P}(j)$

The Ansatz for the Spectrum

- The PSL(2|2) WZW model is a logarithmic CFT. [Götz, Quella, Schomerus `07]
 [Quella, Schomerus `07]
- Motivated by the spectra of known logarithmic CFTs, we propose the space of states to be of the form [Gaberdiel, Runkel `07]

[Gaberdiel, Runkel, Wood `09]

$$\mathcal{H}^{(0)} = \hat{\mathcal{H}}/\mathcal{N}$$
, where $\hat{\mathcal{H}} = \bigoplus_{(j_1, j_2)} \mathcal{P}(j_1, j_2) \otimes \overline{\mathcal{P}(j_1, j_2)}$,

* The subrepresentation \mathcal{N} has to be chosen such that w.r.t. the left action of $\mathfrak{psl}(2|2)$ we have the identification

$$\mathcal{H}^{(0)} = \bigoplus_{(j_1, j_2)} \mathcal{P}(j_1, j_2) \otimes \overline{\mathcal{L}(j_1, j_2)} ,$$

How to Define \mathcal{N} ?

- There is a natural way to obtain submodules: <u>kernels</u> and <u>images</u> of homomorphisms.
- * The basic homomorphisms between projective covers are

$$s_{\sigma}^{\pm}: \mathcal{P}(j) \to \mathcal{P}(j + \frac{\sigma}{2})$$
,

mapping the head of $\mathcal{P}(j)$ to one of the heads of the maximal subrepresentation of $\mathcal{P}(j + \frac{\sigma}{2})$.

Basic Homomorphisms

How to Define \mathcal{N} ?

Submodules consistent with the requirement before are

$$\mathcal{N}_{\sigma}^{\pm}(j) = \left(s_{\sigma}^{\pm} \otimes \overline{\mathrm{id}} - \mathrm{id} \otimes \overline{(s_{\sigma}^{\pm})^{\vee}}\right) \left(\mathcal{P}(j - \frac{\sigma}{2}) \otimes \overline{\mathcal{P}(j)}\right)$$

Note that the induced equivalence relation identifies states in different direct summands of *Ĥ* !

 $\left(\mathcal{P}(j)\otimes\overline{\mathcal{P}(j)}\right)\supset \mathcal{M}_{\sigma}^{\pm}(j-\frac{\sigma}{2})\otimes\overline{\mathcal{P}(j)} \sim \mathcal{P}(j-\frac{\sigma}{2})\otimes\overline{\mathcal{M}_{-\sigma}^{\mp}(j)} \subset \left(\mathcal{P}(j-\frac{\sigma}{2})\otimes\overline{\mathcal{P}(j-\frac{\sigma}{2})}\right).$

This looks pretty formal, but here's a really nice way to think about it....

An Illustration of the Equivalence

The Ansatz for the Spectrum

- * The PSL(2|2) WZW model is a logarithmic CFT.
- Motivated by the spectra of known logarithmic CFTs, we propose the space of states to be of the form

$$\mathcal{H}^{(0)} = \hat{\mathcal{H}}/\mathcal{N} \;, \qquad ext{where} \qquad \hat{\mathcal{H}} = \bigoplus_{(j_1, j_2)} \mathcal{P}(j_1, j_2) \otimes \overline{\mathcal{P}(j_1, j_2)} \;,$$

* The subrepresentation \mathcal{N} has to be chosen such that w.r.t. the left action of $\mathfrak{psl}(2|2)$ we have the identification

$$\mathcal{H}^{(0)} = \bigoplus_{(j_1, j_2)} \mathcal{P}(j_1, j_2) \otimes \overline{\mathcal{L}(j_1, j_2)} ,$$

Lift of the Hybrid-BRST-Operator

* The hybrid BRST-operator does not induce a homomorphism on $\mathcal{P}(j)$:

$$\left[Q,\mathfrak{g}^{(1)}\right]\Big|_{\mathcal{P}(j)} \propto C_2 \neq 0.$$

- * But there exists a unique homomorphism $\mathcal{P}(j) \to \mathcal{P}(j)$ that reduces to the action of the hybrid BRST-operator Q on $\mathcal{K}(j)$.
- * Thus in the presented description of the space of states, one should take the cohomology with respect to *the lifted BRST-operator*.

The BRST Cohomology

Low-Lying String States

	$(j_2, \bar{\jmath}_2)$	$\mathfrak{psl}(2 2)$ -rep	$\#$ in $\mathfrak{psl}(2 2)$ -rep	$\#$ in \mathcal{H}	\sum	
	$(0,0)_{S^3}$	$\mathcal{L}(0)\otimes\overline{\mathcal{L}(0)}$	4	4	6	
		$\mathcal{L}(rac{1}{2})\otimes\overline{\mathcal{L}(rac{1}{2})}$	1	2		
	$(0, \frac{1}{2})_{S^3}$	$\mathcal{L}(0)\otimes\overline{\mathcal{L}(0)}$	2	2	8	
		$\mathcal{L}(rac{1}{2})\otimes\overline{\mathcal{L}(rac{1}{2})}$	2	4		Spectrum in agreement
		$\mathcal{L}(0)\otimes\overline{\mathcal{L}(1)}$	2	2		with the superoravity
	$(\frac{1}{2},\frac{1}{2})_{S^3}$	$\mathcal{L}(0)\otimes\overline{\mathcal{L}(0)}$	1	1	13	with the supergravity
		$\mathcal{L}(rac{1}{2})\otimes\overline{\mathcal{L}(rac{1}{2})}$	4	8		answer!
		$\mathcal{L}(0)\otimes\overline{\mathcal{L}(1)}$	1	1		
		$\mathcal{L}(1)\otimes\overline{\mathcal{L}(0)}$	1	1		[Deger, Kaya, Sezgin, Sundell `98]
		$\mathcal{L}(1)\otimes\overline{\mathcal{L}(1)}$	1	2		[de Boer `98]
	$(0,1)_{S^3}$	$\mathcal{L}(0)\otimes\overline{\mathcal{L}(1)}$	4	4		
		$\mathcal{L}(rac{1}{2})\otimes\mathcal{L}(rac{1}{2})$	1	2	7	
		$\mathcal{L}(rac{1}{2})\otimes\overline{\mathcal{L}(rac{3}{2})}$	1	1		

Table 1. Decomposition of \mathcal{H}_{phys} under $\mathfrak{so}(4)$. The first column denotes the $\mathfrak{so}(4)$ representations, the second enumerates the irreducible $\mathfrak{psl}(2|2)$ representations which contain the relevant $\mathfrak{so}(4)$ representation. The third column lists its multiplicity within the $\mathfrak{psl}(2|2)$ representation, and the fourth its overall multiplicity in \mathcal{H}_{phys} . Finally, the last column sums the multiplicities from the different $\mathfrak{psl}(2|2)$ representations.

Conclusions and Outlook

- A description of the space of massless string states as the quotient of a full space of states was proposed.
- The physical subsector was determined by taking the cohomology of a lifted hybrid BRST operator and shown to agree with the supergravity answer.
- * Massive States?
- * RR-Deformations away from the WZW-point in moduli space?