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Why String Theory on AdS3?

✤ Superstring Theory on AdS-spaces is conjectured to be dual to 
conformal field theories.

✤ In pure NS-backgrounds, there exists a
well-established RNS-formulation of string theory on AdS3×S3 
in terms of a (world sheet)-supersymmetric SL(2)×SU(2) WZW model. 

✤ Formulation including RR-flux is desirable.
⇒   Target space supersymmetric formulation is needed.
⇒   Need to find a „superspace-version“ of SL(2)×SU(2) ≃ AdS3×S3!

[Maldacena `98]

[Giveon, Kutasov, Seiberg `98]
[Kutasov, Seiberg `99]



Lie Superalgebras

✤ A Lie superalgebra is given by a Lie algebra       
and a set of fermionic generators         such that

✤ In other words, the fermionic generators form a representation of        
with respect to the adjoint action.

✤ The anticommutator needs to be compatible with the       -action.
(generalised Jacobi identity)
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Adding SUSY to AdS3×S3

✤ As manifolds we can locally identify AdS3×S3 with (a real form of) the 
semisimple Lie algebra

✤ This Lie algebra allows a consistent supersymmetric structure, i.e. 
it appears as the bosonic subalgebra of a Lie superalgebra.

✤ The resulting Lie superalgebra is known as psl(2|2) .

sl(2)� sl(2) .



Superstrings on AdS3×S3

✤ The hybrid formulation gives a description of the superstring that is 
target space supersymmetric in 6 dimensions.

✤ Superstrings on AdS3×S3 (including RR-flux) are described by a 

✤ a non-linear sigma-model on PSL(2|2) 

✤ + an (twisted) N=2 superconformal structure on the world sheet.

✤ The WZW-point corresponds to the case of pure NSNS-flux.
topic of this talk! ➚

[Berkovits, Vafa, Witten `99]



The Path to the Physical States

✤ Goal: Give a description of the physical string spectrum in the hybrid 
formulation.

✤ 1st Step: Understand the representations of 

✤ 2nd Step: Determine the space of states of the PSL(2|2) WZW-model.

✤ 3rd Step: Find the cohomology of physical string states.

✤ Today, we will restrict ourselves to the massless sector of string states!

psl(2|2) .



Representations: Kac-Modules

✤               has a decomposition of the form

✤ First take a representation                 of the bosonic subalgebra.
      Note: We are interested in representations with 

✤ Let all elements in      act trivially on

✤ The Kac-module                 is obtained by treating        as 
fermionic creation operators.

✤ Warning: Kac-modules may not be fully reducible!

g = g(0) � g�1 � g1

g1

g�1

[Kac `77]

psl(2|2)

V(j1, j2)

V(j1, j2) .

K(j1, j2)

j1 < 0 , j2 � 0 .

annihilation operators

creation operators
⬊

⬉



Atypical Kac-Modules

✤ For              , Kac-Modules are reducible if the second Casimir vanishes,

✤ These are referred to as  atypical, and denoted 

psl(2|2)

j1 + j2 + 1 = 0 .
[Kac `77]

[Götz, Quella, Schomerus `07]

K(j) ⌘ K(�j � 1, j) .

K(j) : for j � 1
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Projective Covers

✤ The projective cover                 of an irreducible representation                 
is in some sense the largest indecomposable representation 
covering

✤                 covers every representation that itself is covering

✤ In particular,                 covers the Kac-module

P(j1, j2) L(j1, j2)

L(j1, j2) .

P(j1, j2) L(j1, j2) .

K(j1, j2) .P(j1, j2)



The Projective Cover P(j)
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Figure 3. The projective cover P0(j) for j � 1 in terms of irreducible components. Solid lines

correspond to mappings decreasing the grading by 1, while dashed lines increase it by 1. Note

that the Z-grading lifts almost the entire degeneracy except for the middle component L(j) with

multiplicity 2.

where the superscript ± indicates to which of the two irreducible representations L(j + �
2

)

the head of P(j) is mapped to, see Fig. 4 for an illustration of the map s+
+1

. We shall

denote the image of this map by M±
� (j),

M±
� (j) ⌘ s±�

�
P(j)

�
. (2.10)

Note that it follows from Fig. 4 that the kernel of s±� is isomorphic to M±
� (j � �

2

). Thus

we have the exact sequence

0 �! M±
� (j � �

2

)
◆�! P(j)

s±��! M±
� (j) �! 0 , (2.11)

where ◆ denotes the inclusion M±
� (j � �

2

) ,! P(j).

2.3.2 The Projective Covers for j  1

2

The cases of P(j) with j = 0, 1
2

need to be discussed separately, since then BGG duality

would give rise to a Kac composition for P(j) that contains K(0); however, as we have

explained before, K(0) is not completely reducible with respect to g

(0), and hence should

not arise in our category. We therefore have to work from first principles, and construct

P(j) by the property that any representation with head L(j) has to be covered by P(j).5

5
Note that the projective covers for j = 0 and j =

1
2 that were suggested in section 2.4.2 of [25] do not

seem to be consistent with these constraints: for their choices of projective covers it is not possible to cover

both subrepresentations generated from L±1(0) at the first level of P(

1
2 ) by P(0). Indeed, P(

1
2 ) predicts

that there is a map from each L±1(0) to the trivial representation in the middle line of P(

1
2 ), but according

to their P(0), there is only one arrow from L(0) to the trivial representation at the first level, and this

arrow cannot cover both maps in P(

1
2 ).

– 7 –

[Zou `96]
[Germoni `98]

[Götz, Quella, Schomerus `07]



The Ansatz for the Spectrum

✤ The PSL(2|2) WZW model is a logarithmic CFT.

✤ Motivated by the spectra of known logarithmic CFTs, we propose the 
space of states to be of the form

✤ The subrepresentation       has to be chosen such that w.r.t. the left 
action of               we have the identificationpsl(2|2)

N

on the Virasoro highest weight states. In order to describe the spectrum of the conformal

field theory, we therefore only have to explain which combinations of representations of

the zero modes appear for left- and right-movers. In fact, in this paper we shall only

study these massless ‘ground states’, and thus the a�ne generators will not make any

appearance. We hope to analyse the massive spectrum (for which the a�ne generators will

play an important role) elsewhere.

The structure of the ground states H(0) should be determined by the harmonic analysis

of the supergroup. This point of view suggests [39] that H(0) is the quotient of Ĥ by a

subrepresentation N

H(0) = Ĥ/N , where Ĥ =
M

(j1,j2)

P(j
1

, j
2

)⌦ P(j
1

, j
2

) , (3.1)

and the sum runs over all (allowed) irreducible representations L(j
1

, j
2

), with P(j
1

, j
2

) the

corresponding projective cover. The relevant quotient should be such that, with respect to

the left-moving action of psl(2|2), we can write

H(0) =
M

(j1,j2)

P(j
1

, j
2

)⌦ L(j
1

, j
2

) , (3.2)

and similarly with respect to the right-moving action. Furthermore, the analysis of a

specific class of logarithmic conformal field theories in [28, 29] suggests, that the subrep-

resentation N has a general simple form that we shall explain below. This ansatz was

obtained in [28] for the (1, p) triplet models by studying the constraints the bulk spectrum

has to obey in order to be compatible with the analogue of the identity boundary condition

(that had been previously proposed). In [29] essentially the same ansatz was used in an

example where a direct analogue of the identity boundary condition does not exist, and

again the resulting bulk spectrum was found to satisfy a number of non-trivial consistency

conditions, thus justifying the ansatz a posteriori. Given the close structural similarity

between the projective covers of [29] and those of the atypical representations above, it

seems very plausible that the ansatz of [29] will also lead to a sensible bulk spectrum in

our context, and as we shall see this expectation is borne out by our results.

In the following we shall only consider the ‘atypical’ part of H(0), since, using the

mass-shell condition, these are the only representations that appear for the massless string

states. Actually, it is only for these sectors that the submodules N are non-trivial (since

for typical (j
1

, j
2

), the projective cover P(j
1

, j
2

) agrees with the irreducible representation

L(j
1

, j
2

), and hence N has to be trivial).

Following [28, 29] we then propose that the subspace N by which we want to divide

out Ĥ, is spanned by the subrepresentations

N±
� (j) =

⇣
s±� ⌦ id� id⌦ (s ±

� )_
⌘⇣

P(j � �
2

)⌦ P(j)
⌘

, (3.3)

where s±� was defined in sect. 2.3.1, and j � max{0, �
2

} with � = ±1. It is easy to see from

the definition of s ±
� , see Fig. 4, that the dual homomorphism equals

(s ±
� )_ = s ⌥

�� . (3.4)
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[Gaberdiel, Runkel `07]
[Gaberdiel, Runkel, Wood `09]

[Götz, Quella, Schomerus `07]
[Quella, Schomerus `07]



How to Define      ? 

✤ There is a natural way to obtain submodules: kernels and images of 
homomorphisms.

✤ The basic homomorphisms between projective covers are

mapping the head of           to one of the heads of the maximal 
subrepresentation of 

N

L(j), and the projectivity property for P(j) then implies that for any such M we have

a surjection P(j) ⇣ M. Thus the projective cover P(j) is characterised by the property

that any representation M ‘headed’ by L(j) can be obtained by taking a suitable quotient

of P(j) with respect to a subrepresentation. Note that this last condition depends on

which category of representations M we consider. In this paper we will only work with

representations that are completely decomposable under the action of g(0). This condition

excludes, in particular, the Kac module K(0), since the arrow between 1g�2

and Lg�2

(0)

is induced by J�.

The projective cover of an irreducible L(j) can be constructed by using a generalised

BGG duality [30, 31], which basically states that the multiplicity of the Kac module K(j0) in

the Kac composition series4 of P(j) equals the multiplicity of the irreducible representation

L(j0) in the composition series of K(j). However, two complications arise. First, the

generalised BGG duality only holds in situations where the multiplicities with which L(j)
appears in K(j) is trivial. This problem was solved in [27, 30] by lifting psl(2|2) to gl(2|2),
thereby making g an additional quantum number. Then the two copies of L(j) in K(j) can

be distinguished. Additionally, the generalised BGG duality has only be shown for finite-

dimensional modules so far. In this paper, however, we shall assume that it also holds in the

infinite-dimensional case, at least as long as j is su�ciently large (j � 1). This assumption

will, a posterori, be confirmed by the fact that our analysis leads to sensible results. On

the other hand, for j  1

2

, we cannot directly apply BGG duality since K(0) is not part of

our category. The projective covers for j  1

2

will be constructed in Section. 2.3.2, using

directly the universal property of projective covers described above.

Applying the BGG duality to the projective covers of P(j) with j � 1, and observing

that g�1

generates the states within a Kac module (so that the arrows between di↵erent

Kac modules must come from g

+1

), we obtain from Fig. 2 (compare [25])

Pg(j) : Kg(0) ! Kg+1

(j � 1

2

)�Kg+1

(j + 1

2

) ! Kg+2

(j) , j � 1 , (2.8)

where g denotes again the Z-grading introduced before, with the head of Pg(j) having

grade g. In terms of the decomposition into irreducibe representations we then find (again

using Fig. 2) the structure described in Fig. 3. Note that the projective cover P(j) covers

both the Kac module K(j), as well as the dual Kac module K_(j), since both of them are

headed by the irreducible representation L(j).

2.3.1 Homomorphisms

Before we come to discuss the projective covers for small j, let us briefly describe the

various homormorphisms between di↵erent projective covers. In some sense the ‘basic’

homomorphisms (from which all other homomorphisms can be constructed by composition)

are the homomorphisms (with � = ±1)

s±� : P(j) ! P(j + �
2

) , (2.9)

4
For the Kac composition series we successively look for submodules such that Mj/Mj+1 is a direct sum

of Kac modules (rather than a direct sum of irreducible modules).

– 6 –

P(j)
P(j + �

2 ) .



Basic Homomorphisms
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Figure 4. Illustration of the maps s±� : P(j) �! P(j + �
2 ) using the example of s++1.

Our strategy to do so is as follows. Since we have already constructed P(1), we know

that the subrepresentations of P(1) are part of our category. In particular, this is the case

for the two subrepresentations whose head is L(1
2

) at the first level (and that we shall call

M±
+1

(1
2

) by analogy to the above). The condition that both of them have to be covered

by P(1
2

) puts then strong constraints on the structure of P(1
2

). Assuming in addition that

the projective covers are all self-dual then also fixes the lower part of the P(1
2

), and we

arrive at the representation depicted in Fig. 5(a). Note that this just di↵ers from the naive

extrapolation of Fig. 3 by the fact that the left most irreducible component in the middle

line is missing.

The same strategy can be applied to determine the projective cover P(0) of L(0). Now
P(1

2

) contains the two subrepresentations generated by L(0) in the second line, and P(0)

has to cover both of them. Again, assuming self-duality then leads to the projective cover

depicted in Fig. 5(b). There is one more subtlety however: in P(0) it is consistent to have

only one copy of L(0) at grade zero in the middle line. In order to understand why this is

so, let us review the reason for the multiplicity of 2 of the corresponding L(j) representation
for j � 1

2

. Let us denote the maps leading to and from the relevant L(j) representation in

P(j) (with j � 1) by �±
±1

and �̄±
±1

, see Fig. 6. It now follows from the fact that P(j + 1

2

)
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How to Define     ? 

✤ Submodules consistent with the requirement before are

✤ Note that the induced equivalence relation identifies states in 
different direct summands of      !

N

Ĥ

P(j)⌦ P(j)

N ⇠

P(j + �
2

)⌦ P(j + �
2

)

N

=

P(j + �
2

)⌦ P(j + �
2

)

N ⇠

P(j + �+�0

2

)⌦ P(j + �+�0
2

)

N

Figure 7. Schematic presentation of the equivalence relation. Each big square represents a pro-

jective cover P, and the shaded regions describe the subrepresentations M±
� of P. The red dots

mark exemplary equivalent irreducible components L⌦ L in P(j)⌦ P(j) and P(j + �
2 )⌦ P(j + �

2 ),
respectively. Note that by applying the equivalence relation, the right-moving irreducible is lifted

by one level, while the left-moving one is lowered one level, until the right-moving irreducible is at

the head of some projective cover.

Together with (2.10), we can then write the two terms as

s±� ⌦ id
⇣
P(j � �

2

)⌦ P(j)
⌘
= M±

� (j � �
2

)⌦ P(j) ⇢
�
P(j)⌦ P(j)

�

id⌦ s ⌥
��

⇣
P(j � �

2

)⌦ P(j)
⌘
= P(j � �

2

)⌦M⌥
��(j) ⇢

�
P(j � �

2

)⌦ P(j � �
2

)
�
,

(3.5)

and therefore the two subrepresentations in (3.3) are individual subrepresentations of dif-

ferent direct summands of Ĥ. Dividing out by N therefore identifies

�
P(j)⌦ P(j)

�
� M±

� (j � �
2

)⌦ P(j) ⇠ P(j � �
2

)⌦M⌥
��(j) ⇢

�
P(j � �

2

)⌦ P(j � �
2

)
�
.

(3.6)

Note that this equivalence relation does not preserve the Z-grading: for example, by con-

sidering the corresponding heads, we get the equivalence relation

�
P(j)⌦P(j)

�
� L±1

�
j � �

2

�
⌦ L

0

�
j
�

⇠ L
0

�
j � �

2

�
⌦ L⌥1

�
j
�

⇢
�
P(j � �

2

)⌦P(j � �
2

)
�
.

(3.7)

We shall sometimes denote the corresponding equivalence classes by [ · ]. It is not di�cult

to see that this equivalence relation leads to a description of H(0) as in eq. (3.2). Indeed,

iteratively applying the above equivalence relation we can choose the representative in such

a way that the right-moving factor, say, is the head of the projective cover; this is sketched

in Fig. 7.
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N ⇠

P(j + �
2

)⌦ P(j + �
2

)

N

=

P(j + �
2

)⌦ P(j + �
2

)

N ⇠

P(j + �+�0

2

)⌦ P(j + �+�0
2

)

N

Figure 7. Schematic presentation of the equivalence relation. Each big square represents a pro-

jective cover P, and the shaded regions describe the subrepresentations M±
� of P. The red dots

mark exemplary equivalent irreducible components L⌦ L in P(j)⌦ P(j) and P(j + �
2 )⌦ P(j + �

2 ),
respectively. Note that by applying the equivalence relation, the right-moving irreducible is lifted

by one level, while the left-moving one is lowered one level, until the right-moving irreducible is at

the head of some projective cover.

Together with (2.10), we can then write the two terms as

s±� ⌦ id
⇣
P(j � �

2

)⌦ P(j)
⌘
= M±

� (j � �
2

)⌦ P(j) ⇢
�
P(j)⌦ P(j)

�

id⌦ s ⌥
��

⇣
P(j � �

2

)⌦ P(j)
⌘
= P(j � �

2

)⌦M⌥
��(j) ⇢

�
P(j � �

2

)⌦ P(j � �
2

)
�
,

(3.5)

and therefore the two subrepresentations in (3.3) are individual subrepresentations of dif-

ferent direct summands of Ĥ. Dividing out by N therefore identifies

�
P(j)⌦ P(j)

�
� M±

� (j � �
2

)⌦ P(j) ⇠ P(j � �
2

)⌦M⌥
��(j) ⇢

�
P(j � �

2

)⌦ P(j � �
2

)
�
.

(3.6)

Note that this equivalence relation does not preserve the Z-grading: for example, by con-

sidering the corresponding heads, we get the equivalence relation

�
P(j)⌦P(j)

�
� L±1

�
j � �

2

�
⌦ L

0

�
j
�

⇠ L
0

�
j � �

2

�
⌦ L⌥1

�
j
�

⇢
�
P(j � �

2

)⌦P(j � �
2

)
�
.

(3.7)

We shall sometimes denote the corresponding equivalence classes by [ · ]. It is not di�cult

to see that this equivalence relation leads to a description of H(0) as in eq. (3.2). Indeed,

iteratively applying the above equivalence relation we can choose the representative in such

a way that the right-moving factor, say, is the head of the projective cover; this is sketched

in Fig. 7.

– 12 –



The Ansatz for the Spectrum

✤ The PSL(2|2) WZW model is a logarithmic CFT.

✤ Motivated by the spectra of known logarithmic CFTs, we propose the 
space of states to be of the form

✤ The subrepresentation       has to be chosen such that w.r.t. the left 
action of               we have the identificationpsl(2|2)

N

N

H(0) = Ĥ/N , where Ĥ =
M

(j1,j2)

P(j
1

, j
2

)⌦ P(j
1

, j
2

) ,

on the Virasoro highest weight states. In order to describe the spectrum of the conformal

field theory, we therefore only have to explain which combinations of representations of

the zero modes appear for left- and right-movers. In fact, in this paper we shall only

study these massless ‘ground states’, and thus the a�ne generators will not make any

appearance. We hope to analyse the massive spectrum (for which the a�ne generators will

play an important role) elsewhere.

The structure of the ground states H(0) should be determined by the harmonic analysis

of the supergroup. This point of view suggests [39] that H(0) is the quotient of Ĥ by a

subrepresentation N

H(0) = Ĥ/N , where Ĥ =
M

(j1,j2)

P(j
1

, j
2

)⌦ P(j
1

, j
2

) , (3.1)

and the sum runs over all (allowed) irreducible representations L(j
1

, j
2

), with P(j
1

, j
2

) the

corresponding projective cover. The relevant quotient should be such that, with respect to

the left-moving action of psl(2|2), we can write

H(0) =
M

(j1,j2)

P(j
1

, j
2

)⌦ L(j
1

, j
2

) , (3.2)

and similarly with respect to the right-moving action. Furthermore, the analysis of a

specific class of logarithmic conformal field theories in [28, 29] suggests, that the subrep-

resentation N has a general simple form that we shall explain below. This ansatz was

obtained in [28] for the (1, p) triplet models by studying the constraints the bulk spectrum

has to obey in order to be compatible with the analogue of the identity boundary condition

(that had been previously proposed). In [29] essentially the same ansatz was used in an

example where a direct analogue of the identity boundary condition does not exist, and

again the resulting bulk spectrum was found to satisfy a number of non-trivial consistency

conditions, thus justifying the ansatz a posteriori. Given the close structural similarity

between the projective covers of [29] and those of the atypical representations above, it

seems very plausible that the ansatz of [29] will also lead to a sensible bulk spectrum in

our context, and as we shall see this expectation is borne out by our results.

In the following we shall only consider the ‘atypical’ part of H(0), since, using the

mass-shell condition, these are the only representations that appear for the massless string

states. Actually, it is only for these sectors that the submodules N are non-trivial (since

for typical (j
1

, j
2

), the projective cover P(j
1

, j
2

) agrees with the irreducible representation

L(j
1

, j
2

), and hence N has to be trivial).

Following [28, 29] we then propose that the subspace N by which we want to divide

out Ĥ, is spanned by the subrepresentations

N±
� (j) =

⇣
s±� ⌦ id� id⌦ (s ±

� )_
⌘⇣

P(j � �
2

)⌦ P(j)
⌘

, (3.3)

where s±� was defined in sect. 2.3.1, and j � max{0, �
2

} with � = ±1. It is easy to see from

the definition of s ±
� , see Fig. 4, that the dual homomorphism equals

(s ±
� )_ = s ⌥

�� . (3.4)

– 11 –
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Lift of the Hybrid-BRST-Operator

✤ The hybrid BRST-operator does not induce a homomorphism on         :

✤ But there exists a unique homomorphism                         that reduces 
to the action of the hybrid BRST-operator     on 

✤ Thus in the presented description of the space of states, one should 
take the cohomology with respect to the lifted BRST-operator. 

P(j) ! P(j)
Q K(j) .

h
Q, g(1)

i���
P(j)

/ C2 6= 0 .

P(j)



The BRST Cohomology

L
0

�
j
�

L
+1

�
j + 1

2

�
L�1

�
j + 1

2

�
L
+1

�
j � 1

2

�
L�1

�
j � 1

2

�

L
0

�
j + 1

�
L
+2

�
j
�

2L
0

�
j
�

L�2

�
j
�

L
0

�
j � 1

�

L
+1

�
j + 1

2

�
L�1

�
j + 1

2

�
L
+1

�
j � 1

2

�
L�1

�
j � 1

2

�

L
0

�
j
�

Figure 8. The action of the BRST operators Q+ (blue, dashed arrows) and Q� (red, dotted

arrows) on the projective cover P(j) for j � 1. The irreducible representations that generate the

common cohomology of Q+ and Q� have been circled.

is only true as a vector space, but not as a representation of the two superalgebra actions.

(Indeed, with respect to the left-moving superalgebra, say, the correct action is given by

(3.2).) In order to define the BRST operators on the full space of states it is therefore

more convenient to lift Q± to the projective covers. This requires a little bit of care as the

operators Q±, as defined above, are not nilpotent on P(j). In fact, the quadratic Casimir

does not vanish on P(j) since it maps, for example, the head of P(j) to L
0

(j) in the middle

line, see Fig. 3. However, the projectivity property guarantees that there exist nilpotent

operators

Q± : P(j) ! P(j) , Q2

± = 0 , [psl(2|2),Q±]
��
P(j)

= 0 . (3.19)

For example, for the case of Q�, we apply (2.7) with A = P(j) and B = K(j), and thus

conclude that there exists a homomorphism Q� : P(j) ! P(j) such that

P(j)
Q�

||
Q� �⇡K
✏✏

⇡K �Q� = Q� � ⇡K ,

P(j)
⇡K // // K(j)

(3.20)

where ⇡K is the surjective homomorphism from P(j) to K(j). Furthermore, it follows

from the structure of the projective cover, see Fig. 3 and Fig. 5(a), that there is only

one homomorphism on P(j) of Z-grading �2, namely the one that maps the head L
0

(j)

– 15 –

in the finite-dimensional case 
also found by [Troost `11] 



Low-Lying String States

(j
2

, |̄
2

) psl(2|2)-rep # in psl(2|2)-rep # in H
P

(0, 0)S3
L(0)⌦ L(0) 4 4

6
L(1

2

)⌦ L(1
2

) 1 2

(0, 1
2

)S3

L(0)⌦ L(0) 2 2

8L(1
2

)⌦ L(1
2

) 2 4

L(0)⌦ L(1) 2 2

(1
2

, 1
2

)S3

L(0)⌦ L(0) 1 1

13
L(1

2

)⌦ L(1
2

) 4 8

L(0)⌦ L(1) 1 1

L(1)⌦ L(0) 1 1

L(1)⌦ L(1) 1 2

(0, 1)S3

L(0)⌦ L(1) 4 4

7L(1
2

)⌦ L(1
2

) 1 2

L(1
2

)⌦ L(3
2

) 1 1

Table 1. Decompostion of Hphys under so(4). The first column denotes the so(4) representations,
the second enumerates the irreducible psl(2|2) representations which contain the relevant so(4)
representation. The third column lists its multiplicity within the psl(2|2) representation, and the

fourth its overall multiplicity in Hphys. Finally, the last column sums the multiplicities from the

di↵erent psl(2|2) representations.

4 Conclusions

In this paper we have given a detailed description of the PSL(2|2) WZW model that

underlies the hybrid formulation of AdS
3

⇥ S3 for pure NS-NS flux. Following recent

insights into the structure of logarithmic conformal field theories [24–29] one expects that

the space of states has the structure of a quotient space of a direct sum of tensor products

of projective covers. In this paper we have worked out the details of this proposal: in

particular, we have given a fairly explicit description of all the relevant projective covers

and explained in detail how the quotient space can be defined.

In the hybrid formulation the corresponding string spectrum can then be determined

from this CFT spectrum as a BRST-cohomology. In this paper we have concentrated on

the massless states for which the two BRST operators of [15, 32] can be written in terms

of supergroup generators. While these operators are nilpotent on the tensor product of

Kac modules, they are not actually nilpotent on the full LCFT space H(0). However, as

we have explained in Section 3.3, there is a natural lift of these operators to the projective

covers, and hence toH(0). We have described the structure of the resulting BRST operators

in detail and determined their common cohomology. The resulting massless string states

reproduce precisely the supergravity prediction of [33, 34], including the truncation at small

KK momenta.

It would be interesting to extend the BRST analysis to the massive string states. Our

ansatz for H(0) makes a concrete proposal for the full LCFT spectrum, and provided we
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Spectrum in agreement 
with the supergravity 

answer!

[Deger, Kaya, Sezgin, Sundell `98]
[de Boer `98]



Conclusions and Outlook

✤ A description of the space of massless string states as the quotient of a 
full space of states was proposed.

✤ The physical subsector was determined by taking the cohomology of 
a lifted hybrid BRST operator and shown to agree with the 
supergravity answer.

✤ Massive States?

✤ RR-Deformations away from the WZW-point in moduli space?


