Direct stau production at hadron colliders in cosmologically motivated scenarios

Jonas M. Lindert in collaboration with Frank D. Steffen & Maike K. Trenkel JHEP 08 (2011) 151, arXiv:1106.4005

DESY Theory Workshop: Cosmology meets Particle Physics DESY, Hamburg, September 2011

The MSSM

The MSSM

Motivation

- Usual SUSY signature: missingET + jets (+ leptons) (assuming $\tilde{\chi}_1^0$ dark matter).
- But MSSM also offers other well motivated LOSPs, e.g. the lighter stau $\tilde{\tau}_1$ (Now **gravitino** and/or axino are assumed to be dark matter).
- Due to small couplings (suppressed by $M_{
 m Planck}/f_a$) $ilde{ au}_1$ is long-lived.
- Signature: Charged Massive Particles (CHAMP), i.e. slow but high p^T .
- SM Background: Slow moving high p^T muons.
 - Charged : leaves tracks in the detector
 - Massive : moves slowly (small β), and deposits more energy (large dE/dx)
 - Long-Lived : has long life time, leaves the detector without decaying
 - detected by Muon system (or gets stopped within detector)

Connection with cosmological constraints

- Gravitino LSP can solve the gravitino problem of thermal [Buchmüller, Bari, Plümacher; '04] (gravitino problem= Late time decay products of gravitino $\Psi_{3/2}$ might spoil BBN)
- Each $\tilde{\tau}_1$ decays into LSP and thus contributes to Ω_{DM}^{NTP} .
- Late decays & possible bound states of $\tilde{\tau}_1$ might again spoil BBN.
- Cosmological implications depend on $m_{\tilde{\tau}_1}, \tau_{\tilde{\tau}_1} \text{ and } Y_{\tilde{\tau}_1} = n_{\tilde{\tau}_1}/s.$ $\frac{dY_{\tilde{\tau}}}{dt} = -s \langle \sigma v \rangle \left[Y_{\tilde{\tau}}^2 - (Y_{\tilde{\tau}}^{eq})^2 \right]$ "freeze out" $T \lesssim T_f \longrightarrow Y_{\tilde{\tau}} \approx Y_{\tilde{\tau}}^{eq}(T_f)$

Connection with cosmological constraints

Thermal relic abundance of long-lived staus

- Assuming standard thermal history of the Universe, yield $Y_{\tilde{\tau}_1}$ can be calculated from Boltzmann equations.
- E.g. for $\tilde{\tau}_1 = \tilde{\tau}_R$: $Y_{\tilde{\tau}_1} \simeq (0.4 2.0) \times 10^{-13} \left(\frac{m_{\tilde{\tau}_1}}{100 \text{ GeV}}\right)$ [Berger, Covi, Kraml, Palorini; '08]
- For the CMSSM this implies: $m_{1/2} \ge 0.9 \text{ TeV} \left(\frac{m_{\widetilde{G}}}{10 \text{ GeV}}\right)^{2/5}$,

$$T_{
m R} ~\leq~ 4.9 imes 10^7 \, {
m GeV} \left(rac{m_{\widetilde{G}}}{10 ~{
m GeV}}
ight)^{1/5}$$

- However, $Y_{\tilde{\tau}_1}$ can also be much smaller, due to **efficient annihilation** [Ratz, Schmidt-Hoberg, Winkler; '08 Pradler, Steffen; '09;]
- Now, standard thermal leptogenesis with $T_{\rm R}\gtrsim 10^9~{\rm GeV}$ might be viable.
- Need: a) large stau-stau-Higgs coupling or b) $2m_{ ilde{ au}}pprox m_{H^0}$.

Stau sector in the MSSM

 $m_{\rm LL}^2 = m_{\tilde{L}_3}^2 + \left(-\frac{1}{2} + \sin^2\theta_W\right) M_{\rm Z}^2 \cos 2\beta$

• Stau mass eigenstates

• Stau-stau-Higgs coupling:

$$\begin{split} \mathcal{L}_{\tilde{\tau}\tilde{\tau}\mathcal{H}} &= \frac{g}{M_{\mathrm{W}}} \sum_{I,J=\mathrm{L,R}} \tilde{\tau}_{I}^{*} \, \tilde{C}[\tilde{\tau}_{I}^{*}, \tilde{\tau}_{J}, \mathcal{H}] \, \tilde{\tau}_{J} \, \mathcal{H} \\ & \longrightarrow \quad C^{\mathrm{DL}}[\tilde{\tau}_{1}^{*}, \tilde{\tau}_{1}, h^{0}] \simeq \left(\frac{1}{2}c_{\theta_{\tilde{\tau}}}^{2} - s_{W}^{2}c_{2\theta_{\tilde{\tau}}}\right) M_{Z}^{2}c_{2\beta} - m_{\tau}^{2} - \frac{m_{\tau}}{2} X_{\tau}s_{2\theta_{\tilde{\tau}}} \\ & \text{(DL: decoupling limit, } m_{A^{0}} \gg m_{Z}) \end{split}$$

 However, can not become arbitrarily large: charge-breaking minima (CCB) ! [Hisano, Sugiyama; '10]

Stau sector in the MSSM

• Stau mass eigenstates

$$m_{LL}^{2} = m_{\tilde{L}_{3}}^{2} + \left(-\frac{1}{2} + \sin^{2}\theta_{W}\right) M_{Z}^{2} \cos 2\beta$$

$$m_{\tilde{\tau}}^{2} = \begin{pmatrix} m_{\tau}^{2} + m_{LL}^{2} & m_{\tau}X_{\tau} \\ m_{\tau}X_{\tau} & m_{\tau}^{2} + m_{RR}^{2} \end{pmatrix} = (R_{\tilde{\tau}})^{+} \begin{pmatrix} m_{\tilde{z}_{4}}^{2} & 0 \\ 0 & m_{\tilde{\tau}_{2}}^{2} \end{pmatrix} R_{\tau}$$

$$m_{RR}^{2} = m_{\tilde{E}_{3}}^{2} - \sin^{2}\theta_{W}M_{Z}^{2} \cos 2\beta$$

$$M_{\tilde{\tau}}^{2} = \begin{pmatrix} \cos\theta_{\tilde{\tau}} & \sin\theta_{\tilde{\tau}} \\ -\sin\theta_{\tilde{\tau}} & \cos\theta_{\tilde{\tau}} \end{pmatrix} \longrightarrow \tilde{\tau}_{1} = \cos\theta_{\tilde{\tau}}\tilde{\tau}_{L} + \sin\theta_{\tilde{\tau}}\tilde{\tau}_{R}$$

$$R_{\tilde{\tau}} = \begin{pmatrix} \cos\theta_{\tilde{\tau}} & \sin\theta_{\tilde{\tau}} \\ -\sin\theta_{\tilde{\tau}} & \cos\theta_{\tilde{\tau}} \end{pmatrix} \longrightarrow \tilde{\tau}_{1} = \cos\theta_{\tilde{\tau}}\tilde{\tau}_{L} + \sin\theta_{\tilde{\tau}}\tilde{\tau}_{R}$$
• Stau-stau-Higgs coupling:

$$\mathcal{L}_{\tilde{\tau}\tilde{\tau}}\mathcal{H} = \frac{g}{M_{W}} \sum_{I,J=L,R} \tilde{\tau}_{I}^{*}\tilde{C}[\tilde{\tau}_{I}^{*}, \tilde{\tau}_{J}, \mathcal{H}]\tilde{\tau}_{J}\mathcal{H}$$

$$\longrightarrow C^{DL}[\tilde{\tau}_{1}^{*}, \tilde{\tau}_{1}, h^{0}] \simeq \left(\frac{1}{2}c_{\theta_{\tilde{\tau}}}^{2} - s_{W}^{2}c_{2\theta_{\tilde{\tau}}}\right) M_{Z}^{2}c_{2\beta} - m_{\tau}^{2} - \frac{m_{\tau}}{2}X_{T}s_{2\theta_{\tilde{\tau}}}$$
(DL: decoupling limit, $m_{A^{0}} \gg m_{Z}$)

 However, can not become arbitrarily large: charge-breaking minima (CCB) ! [Hisano, Sugiyama; '10]

Stau sector in the MSSM

• Stau mass eigenstates

$$m_{LL}^{2} = m_{\tilde{L}_{3}}^{2} + \left(-\frac{1}{2} + \sin^{2}\theta_{W}\right) M_{Z}^{2} \cos 2\beta$$

$$M_{\tilde{\tau}}^{2} = \begin{pmatrix} m_{\tau}^{2} + m_{LL}^{2} & m_{\tau}X_{\tau} \\ m_{\tau}X_{\tau} & m_{\tau}^{2} + m_{RR}^{2} \end{pmatrix} = (R_{\tilde{\tau}})^{4} \begin{pmatrix} m_{\tilde{z}_{1}}^{2} & 0 \\ 0 & m_{\tilde{z}_{2}}^{2} \end{pmatrix} R_{\tau}$$

$$M_{\tilde{\tau}}^{2} = m_{\tilde{E}_{3}}^{2} - \sin^{2}\theta_{W}M_{Z}^{2} \cos 2\beta,$$

$$M_{\tilde{\tau}}^{2} = \left(\cos \theta_{\tilde{\tau}} & \sin \theta_{\tilde{\tau}} \\ -\sin \theta_{\tilde{\tau}} & \cos \theta_{\tilde{\tau}} \end{pmatrix} \longrightarrow \tilde{\tau}_{1} = \cos \theta_{\tilde{\tau}}\tilde{\tau}_{L} + \sin \theta_{\tilde{\tau}}\tilde{\tau}_{R}$$
• Stau-stau-Higgs coupling:

$$\mathcal{L}_{\tilde{\tau}\tilde{\tau}\mathcal{H}} = \frac{g}{M_{W}} \sum_{I,J=L,R} \tilde{\tau}_{I}^{*} \tilde{C}[\tilde{\tau}_{I}^{*}, \tilde{\tau}_{J}, \mathcal{H}] \tilde{\tau}_{J} \mathcal{H}$$

$$\longrightarrow C^{DL}[\tilde{\tau}_{1}^{*}, \tilde{\tau}_{1}, h^{0}] \simeq \left(\frac{1}{2}c_{\theta_{\tilde{\tau}}}^{2} - s_{W}^{2}c_{2\theta_{\tilde{\tau}}}\right) M_{Z}^{2}c_{2\beta} - m_{\tau}^{2} - \frac{m_{\tau}}{2} X_{T}^{2}c_{2\theta_{\tilde{\tau}}}$$
(DL: decoupling limit, $m_{A^{0}} \gg m_{Z}$)

 However, can not become arbitrarily large: charge-breaking minima (CCB) ! [Hisano, Sugiyama; '10]

Production of staus at hadron colliders

• Direct production

• Production in cascade decays

determined by squark + gluino production (& BRs)

Direct Production of staus at hadron colliders

Technical detail: higher order corrections of bbh/H - vertex drive down cross sections (especially for large $\tan \beta$). Use resummed effective mass m_b^{eff} and effective couplings.

[Carena, et. al.; '94; Heinemeyer et. al.; '05]

Numerical Results

Numerical Results

Other SUSY Parameters:

$$\begin{split} \theta_{\tilde{\tau}} &= 45^{\circ}, \qquad m_{\tilde{\tau}_1} = 200 \ \text{GeV} \\ M_1 &= M_2 = M_3 = 1.2 \ \text{TeV}, \qquad A_{\rm t} = A_{\rm b} = A_{\tau} = 600 \ \text{GeV}, \\ m_{\tilde{Q}_i} &= m_{\tilde{U}_i} = m_{\tilde{D}_i} = 1 \ \text{TeV}, \qquad m_{\tilde{L}_{1/2}} = m_{\tilde{E}_{1/2}} = 500 \ \text{GeV}, \end{split}$$

Realistic Numerical Results

Stau production in the CMSSM

Exceptionally small stau yields in the CMSSM

Conclusions

- jets + missingET is not the only channel for SUSY at the LHC.
- $b\overline{b} \& gg$ initial states can enhance direct stau production cross section significantly.
- ... especially in regions motivated by cosmology.
- Good prospects for discovery in the near future.
- Interesting (unusual) collider phenomenology with long-lived new particles.
- Possibility to test early universe cosmology in the laboratory.

Exceptionally small stau yields in the CMSSM

Benchmark point		α	β	γ	Benchmark point		α	β	γ
m _{1/2}	[GeV]	600	1050	600	LHC 7 TeV				
m_0	[GeV]	800	30	600	$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{ m DY}$	[fb]	3.2(2.3)	12.5(7.3)	9.0(5.6)
an eta		55	55	55	$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{bar{b}}$	[fb]	9.8(5.1)	0.03(0.02)	19.2(16.5)
A_0	[GeV]	1600	60	1200	$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{ m gg}$	[fb]	0.1(0.1)	3.3(2.4)	0.32(0.25)
$m_{ ilde{ au}_1}$	[GeV]	193	136	148	$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{\mathrm{all}}$	[fb]	13.1(7.5)	15.8(9.7)	28.5(22.4)
$ heta_{ au}$		81°	73°	77°	$\sigma(ilde{g} ilde{g})$	[fb]	0.05	10-0	0.06
m_{H^0}	[GeV]	402	763	413	$\sigma(ilde{g} ilde{q})$	[fb]	0.63	4×10^{-4}	0.99
Γ_{H^0}	[GeV]	15	26	16	$\sigma(ilde{q} ilde{q})$	[fb]	1.18	0.006	2.41
$m_{ ilde{g}}$	[GeV]	1397	2276	1385	$\sigma(\tilde{\chi}\tilde{q}) + \sigma(\tilde{\chi}\tilde{g})$	[fb]	0.481	0.007	0.72
avg. $m_{\tilde{q}}$	[GeV]	1370	1943	1287	$\sigma(ilde{\chi} ilde{\chi})$	[fb]	20.4	0.29	19.8
μ	[GeV]	667	1166	648	LHC 14 TeV				
$A_{ au}$	[GeV]	515	-143	351	$\sigma(\tilde{\tau}_1\tilde{\tau}_1^*)_{\mathrm{DY}}$	[fb]	11.2(5.64)	37.5(15.9)	28.0(12.4)
$BR(b \rightarrow s\gamma)$	$[10^{-4}]$	3.08	3.03	2.94	$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{bar{b}}$	[fb]	58.4(27.0)	0.7(0.2)	113.3(87.1)
$BR(B_s^0 \to \mu^+ \mu^-)$	$[10^{-8}]$	1.65	1.04	2.44	$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{ m gg}$	[fb]	0.7(0.4)	17.4(11.1)	1.8(1.3)
a_{μ}	$[10^{-10}]$	13.2	11.5	16.8	$\sigma(ilde{ au}_1 ilde{ au}_1^*)_{\mathrm{all}}$	[fb]	70.3(33.1)	55.6(27.2)	143.1(100.8)
CCB [107]		✓	-	\checkmark	$\sigma(ilde{g} ilde{g})$	[fb]	20.2	0.12	20.8
$Y_{ au_1}$	$[10^{-15}]$	3.5	2.5	37.7	$\sigma(ilde{g} ilde{q})$	[fb]	104.4	2.46	133.2
2					$\sigma(ilde q ilde q)$	[fb]	92.5	6.46	139.0
					$\sigma(\tilde{\chi}\tilde{q}) + \sigma(\tilde{\chi}\tilde{g})$	[fb]	16.9	1.08	22.4

 $\sigma(\tilde{\chi}\tilde{\chi})$

134.5

6.40

131.1

[fb]

Parameter Determination

- Mass $m_{\tilde{\tau}_1}$ can be measured very accurately via ToF Measurement.
- This can be used as a starting point to reconstruct other masses from decay chains: $m_{\tilde{q}}$, $m_{\tilde{\chi}_2^0}$.
- Additional approach: direct production.
 - Additional channel for MSSM-Higgs physics.

Stopping of long-lived staus

Stopping of long-lived staus

 $ilde{ au}_1$ are stopped for: $\beta\gamma \lesssim 0.45$