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Introduction
Inflation... solution of many cosmological problems

horizon/flatness problem, origin of primordial perturbation

How to embed inflation in the model of high energy physics?



Inflation models embedded 
in high energy physics models

-GUT Higgs (’84 Shafi+ and so on...)
-Right-handed scalar neutrino (’93 Murayama+)
-String inspired models (’04 Kachru+ and so on...)
-Flat direction in the MSSM (’06 Allahverdi+) 
-Standard model Higgs (’08 Bezrukov+, ’11 KK+)
-and so on...



This talk 
   ... Inflation from SUSY-breaking sector 
We propose

an inflationary scenario that does not need any 
additional degrees of freedom in a gauge-mediated 
SUSY-braking  model 

This model can predict
healthy cosmic history ... NO gravitino/moduli problem
testable model parameters such as gaugino mass



Why SUSY ?
✓SUSY(supersymmetry) is one of the most promising 
models beyond the standard model of particle physics

- Hierarchy problem, gauge coupling unification
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✓SUSY predicts “SUSY particles” whose masses and 
other properties are the same as the SM particle other 
than their spin. 
✓SUSY must be broken at a high-energy scale outside 
the MSSM sector. 

Why SUSY-breaking ?

visible sectorvisible sector
(M)SSM

SM

hidden sectorhidden sector

SUSY
SUSY-breaking is 

mediated by some interactions

Otherwise SUSY particles must have been detected already. 



Here we consider ... 
a gauge-mediated SUSY-breaking model

SU(N) U(1)1 U(1)2 U(1)R

χ 1 1 0 0
χ̄ 1 −1 0 0
ρ ! 0 1 0
ρ̄ !̄ 0 −1 0
Z ! −1 1 2
Z̄ !̄ 1 −1 2
Y 1 0 0 2
Φ 1 0 0 2

Table 1: The charge assignments of the fields in our model.

universe.

The rest of the paper is organized as follows. In section 2, we present our inflation model

and analyze the vacuum structure and the mass spectrum around the metastable vacuum.

We also evaluate the soft mass spectrum of the visible sector fields from gauge mediation. In

section 3, we present the inflationary scenario based on Ref. [18] and estimate the reheating

temperature after inflation. In section 4, the oscillation of the pseudomoduli field is analyzed.

Next, we investigate the decay temperature of the pseudomoduli field. We will also show

the gravitino abundance due to the pseudomoduli decay. Then, we find the model parameter

space consistent with the BBN constraints and the present dark matter abundance. In section

6, we conclude our discussions.

2 SUSY breaking

In this section, we present a metastable SUSY breaking model, which drives inflation and

gauge mediation, and analyze its vacuum structure. Then, we analyze the mass spectrum

around the SUSY breaking vacuum. We also show the soft mass spectrum of the visible

sector fields obtained by gauge mediation.

2.1 The model

The model is a Wess-Zumino model with an SU(N) global symmetry.4 The matter content

is summarized in Table 1. χ and χ̄ are singlets under the SU(N) group and the fields ρ, ρ̄

belong to the (anti-)fundamental representation under the SU(N) group. Z and Z̄ are also

a vector-like pair of the (anti-)fundamental representation under the SU(N) group. Y and

Φ are singlets under all the global symmetries. The tree-level Kähler potential of all fields is

4Later, we gauge this global symmetry to be the standard model gauge symmetry.

4

SUSY-breaking in the hidden sector is transmitted to the visible sector 
by the standard model gauge interactions. 

Wess-Zumino model with 
SU(N) (global)symmetry



Vacuum structure

SUSY preserving
vacuum

SUSY breaking vaccum

SUSY breaking vacuum:

: pseudomoduli
... stabilized one-loop effect
   uplifted SUSY breaking vacuum

|Φ0| � 1
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hΦ
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CW.



Vacuum structure
Vacuum stability is guaranteed by the non-vanishing 
expectation values of 

Identifying the SU(N) global symmetry is the gauge 
symmetry of the visible sector that includes the standard 
model gauge symmetry as a subgroup,
             act as messengers   ... gauge mediation

The emergence of gaugino mass 
is guaranteed by the existence 
of lower vacuum. 
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✓All the fields are essential for SUSY breaking.
✓A hybrid inflation is embedded in this model 
without introducing other degree of freedom. 
✓Consistent cosmic history is realized with 
appropriate parameter choices. 
✓SUSY-breaking vacuum is chosen after hybrid 
inflation naturally. 



Realization of hybrid inflation

-inflaton:
-waterfall-field:

waterfall fields become tachyonic @
and inflation ends. 

quantum correction

primordial perturbation:
•small tensor perturbation
• 
• small non-gaussianity

ns � 1



Problems in inflation models embedded 
in the SUSY-breaking sector
✓Are SM sector fields thermalized properly?
✓Is the SUSY-breaking vacuum correctly selected?
✓Are not undesirable fields such as gravitinos 
substantially produced?

Hubble induced mass
stabilizes all the fields other than inflaton
at the origin. 

V ∼ 3H
2|φ|2



Inflaton decay
-Inflaton decays into SM sector through SM gauge interaction.
-SUSY-breaking sector fields except for moduli fields are as 
heavy as inflaton and are not thermalized if                 .

X, Y

λ

λ

ψZ

ψρ̄

ψZ

Z

Figure 2: The decay of a waterfall field X into an MSSM gaugino pair. ψ denotes the fermion
partner of the messenger field.

The reheating temperature is, then, estimated as

T (pert)
R !

(
90

π2gR
∗

)1/4

×
√

ΓRMPl

! 0.45 × N2

(4π)2

(√
hY

8π

)1/2
h4

Yg2
3

h3
Z

(mMPl)
1/2

! 5.2 × 1010GeVN7/2
( rg

3.5

)−6 ( m3/2

15 GeV

)−3 ( mΦ

300 GeV

)−3 ( mg̃

1.5 TeV

)6
(

hY

3 × 10−3

)17/3

,

(3.20)

where gR
∗ is the number of the relativistic degrees of freedom at the time of reheating and we

take it as gR
∗ ! 220. The decay into the pseudomoduli field is also possible but is suppressed

by the additional small yukawa couplings. Since the messenger scale is estimated to be

O(1013) GeV, the SUSY breaking sector cannot be thermalized in our scenario.

Note that if the coupling hY is small enough, inflaton/waterfall field decay through super-

gravity effect,

Γ(grav)
R ! 3 × 10−4

√
hY m5

M4
pl

, (3.21)

which is due to the non-vanishing vacuum expectation value (VEV) of waterfall fields, over-

whelm the perturbative decay. The reheating temperature through this process is given by

T (grav)
R ! 0.45

√
Γ(grav)

R Mpl ! 5.2 × 107GeV ×
(

hY

3 × 10−3

)7/3

. (3.22)

This gives the lower bound of the reheating temperature. Therefore, the reheating tempera-

ture is evaluated as

TR = max.{T (pert)
R , T (grav)

R }. (3.23)

When the following condition is satisfied,

mg̃ ! 0.47 TeV × N−7/12
( rg

3.5

) ( m3/2

15 GeV

)1/2 ( mΦ

300 GeV

)1/2
(

hY

3 × 10−3

)−5/9

, (3.24)
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High reheating temperature but gravitino problem does not occur as we will see. 



Moduli oscillation

-moduli field stabilizes near the SUSY-breaking vacuum 
during inflation and starts oscillation later. 

During inflation After inflation



moduli domination and decay
-moduli field oscillation can dominate the energy density of 
the Universe but can decay into SM sector before BBN.
-gravitinos may be produced substantially at reheating but 
can be diluted by moduli decay.

moduli decay

Td � 4.4 MeV×
�

mg̃

3.5mẽ

�−2 � mg̃

1.5 TeV

�3 � m3/2

15 GeV

�−1 � mΦ

300 GeV

�−1/2
.



Gravitino dark matter
✓gluino scattering in the thermal plasma
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Figure 4.1: Feynman rules for the interactions of gravitino.
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⇒ effective at reheating

✓from moduli decay

can be diluted by the moduli decay

’07 Ibe and Kitano

’05 Kawasaki, Kohri and Moroi

� 10−3



Constraints on the model
✓amplitude of primordial perturbation

✓moduli must decay before BBN

✓Gravitinos must not overclose the Universe

These conditions determine 
the allowed parameter region

(WMAP)



Figure 3: The allowed region (shaded region) of the gravitino mass (horizontal axis) and the
gluino mass (longitudinal axis). In the left and right figures, the moduli mass is taken to be
300 GeV and 500 GeV respectively. The gaugino-to-scalar mass ratio is rg = 3.5.

which is required to be below the present dark matter abundance. This gives further constraint

on the parameters in our model.

Now, we see the existence of the parameter space where all the constraints are satisfied.

Figure 3 shows the allowed region (shaded region) of the gravitino mass (horizontal axis) and

the gluino mass (longitudinal axis) which satisfies the constraints from the decay temperature

(4.12) and the gravitino abundance (4.17), (4.19). We also show the parameter region where

the total gravitino abundance corresponds to the present dark matter abundance. Here, the

moduli mass is taken to be 300 GeV (left figure) or 500 GeV (right figure). The gaugino-to-

scalar mass ratio is set to be rg = 3.5 in both cases. The constraint 2hZ > hY is presented

so that the inflaton and the waterfall fields cannot decay into the messengers, which changes

our thermal history. We can see from the left figure that the thermally produced gravitino

abundance and the decay temperature put strong constraints on the gluino mass. For the

region of the small gravitino mass, the abundance of non-thermally produced gravitinos has

an important effect on the allowed gluino mass region. On the other hand, in the right figure,

the abundance of gravitinos from the pseudomoduli decay puts a strong constraint on the

allowed region of the gluino mass and the constraint from the decay temperature becomes

weak. The allowed gravitino mass is always O(10) GeV in the right one. We define the

ratio of the gravitino abundance produced at the time of reheating and the pseudomoduli

decay, r3/2 ≡ Ω(th)
3/2 /Ω(d)

3/2. As the gluino mass is decreasing, the ratio also decreases and the

abundance of gravitinos from the pseudomoduli decay becomes dominant.

Figure 4 shows the allowed region (shaded region) of the gravitino mass (horizontal axis)

and the gaugino-to-scalar mass ratio (longitudinal axis). In the left (right) figure, the moduli

19

Allowed parameter region



Allowed parameter region

Figure 4: The allowed region (shaded region) of the gravitino mass (horizontal axis) and the
gaugino-to-scalar mass ratio (longitudinal axis). In the left and right figures, the moduli mass
is taken to be 300 GeV and 500 GeV respectively. The gluino mass is 1.5 TeV.

mass is taken to be 300 GeV (500 GeV). Here we take the gluino mass as 1.5 TeV. In the

left figure, the upper bound for the mass ratio comes from the constraint that the moduli

oscillation is stable, in other words, the messenger fields do not become tachyonic during

the moduli oscillation. The constraint from the gravitino abundance from the pseudomoduli

decay gives weaker bound. On the other hand, in the right figure, the gravitino abundance

from the pseudomoduli decay gives the stronger constraint on the mass ratio. We can also

see that the abundance of gravitinos produced at the time of reheating gives a lower bound

for the mass ratio in both the left and right figures. As the mass ratio is decreasing, the ratio

r3/2 increases and the abundance of thermally produced gravitinos becomes dominant.

As discussed in Ref. [18], if the Bino is the next to lightest supersymmetric particle (NLSP),

the moduli field can decay into two Binos. In this case, these Binos decay into gravitinos later,

which breaks BBN. However, in the case where the moduli, gluino and gravitino masses take

the reference values and the gaugino-to-scalar mass ratio is rg = 3.5, the Bino mass is around

230 GeV. Then, the moduli field cannot decay into two Binos and hence this problem does not

occur. In conclusion, there is a model parameter space where this scenario can be successful.

5 Conclusion

In this paper, we have followed the line of Ref. [17] and proposed an inflationary scenario

with gauge mediation of SUSY breaking. The higher mass scale in the model is set for the

inflationary scale, and the lower mass scale corresponds to the SUSY breaking scale to give the

correct MSSM soft masses by direct gauge mediation. After inflation, the metastable SUSY

breaking vacuum is chosen naturally. We have analyzed the reheating stage of the model.

20



Conclusion & Discussion

✓Inflation model embedded in SUSY-breaking model
✓Successful inflationary scenario and reheating
✓Gravitino dark matter

✓Problems
-cosmic string 

             → modification of vacuum structure, shifted hybrid inflation
-baryogenesis → Affleck-Dine mechanism? 

                             new baryogenesis mechanism associated with 
                             SUSY-breaking sector



Appendix



-gauge mediation
⇒ No Flavor Changing Neutral Current Problem

-meta-stable vacuum
⇒ - Relatively easy model building 

- Sizable gaugino mass is generated 
(thanks to the R-breaking term of         )Z, Z̄

One of the most successful SUSY-breaking models !



Vacuum structure
mass spectrum of the SUSY-breaking sector

Fermions Bosons

Weyl mult. mass SU(N) Real mult. mass SU(N)

Φ 1 0 1 2 mCW 1

Y , χ, χ̄ 1 O(
√

hYm) 1 2 O(
√

hYm) 1

1 O(
√

hYm) 1 2 O(
√

hYm) 1

1 gV
m√
hY

1 2 gV
m√
hY

1

Z, Z̄, ρ, ρ̄ 2N O( hZ√
hY

m) ! + !̄ 4N O( hZ√
hY

m) ! + !̄

2N O( hZ√
hY

m) ! + !̄ 4N O( hZ√
hY

m) ! + !̄

Table 2: The mass spectrum and the representations under the SU(N) symmetry. In the
table, gV denotes the U(1)1 gauge coupling. The scalar component of the pseudomoduli field
Φ has a mass (2.9) by the 1-loop effects.

Then, if the mass hierarchies m " µ and m " mZ are realized, we have S " 1. Thus,

the decay rate is sufficiently suppressed and hence the stability of the metastable vacuum is

guaranteed.

2.2 Mass spectrum

We next analyze the mass spectrum around the SUSY breaking vacuum. The masses of the

fields in the SUSY breaking sector except for the pseudomoduli are generated at the tree-level.

The results of the masses as well as the representations of the fields under the symmetries are

summarized in Table 2. The mass spectrum of the Y , χ, χ̄ sector fields are supersymmetric

at the tree-level. All of the scalar fields in this sector except the Nambu-Goldstone mode

have O(
√

hYm) masses. The corresponding fermionic modes have the same masses at the

tree-level. The Nambu-Goldstone mode is associated with the spontaneous breaking of the

U(1)1 symmetry due to the nonzero expectation values of the χ, χ̄ fields. In order to give this

mode a nonzero mass, we can weakly gauge the U(1)1 symmetry. Then, the Nambu-Goldstone

mode is absorbed into the massive gauge boson of the symmetry group. When we gauge the

spontaneous breaking global symmetry, the fermionic partner of the Nambu-Goldstone boson

becomes a part of the massive vector multiplet.

7



moduli parameters

Effective Kahler

Keff � |Φ|2 − N

32π2

�
hΦmZ

�
Φ + Φ†� + h2

Φ|Φ|
2

− 1
8

hYh3
Φ

h2
Z

mZ

m2
|Φ|2

�
Φ + Φ†� +

1
8

hYh4
Φ

h2
Z

1
m2

|Φ|4 + O(m2
Z)

�
.

@meta stable vacuum
|Φ0| � 1

2
mZ

hΦ
, arg Φ0 = 0,

m2
Φ �

N

64π2

hYh4
Φ

h2
Z

µ4

m2
≡ m2

CW.

assumed to be canonical. The superpotential is given by

W = m2Y + µ2Φ − hYχY χ̄ − hΦρΦρ̄ − hZ(χZρ̄ + ρZ̄χ̄) − mZZZ̄, (2.1)

where the mass scale m is assumed to be larger than the scale µ, and hY, hΦ, hZ are coupling

constants. The model has two U(1) global symmetries. U(1)R symmetry is explicitly broken

by the last term in the superpotential, whose breaking size is determined by the mass scale

mZ. First, we treat them as free parameters and will determine their sizes later as they pass

all the conditions. For simplicity, we assume that all the couplings and the mass parameters

are real.5

Let us analyze the vacuum structure of our model. There exists a metastable SUSY

breaking vacuum6 where the expectation values of the fields are denoted as7

Y = ρ = ρ̄ = Z = Z̄ = 0, χ = χ̄ =
m√
hY

, (2.2)

and the singlet Φ is the pseudomoduli of the SUSY breaking vacuum that is massless at the

tree-level, but obtains a nonzero mass from radiative corrections. Since the vacuum energy is

given by V0 = µ4 at the tree-level, the gravitino mass is estimated as

m3/2 =
µ2

√
3MPl

, (2.3)

where MPl # 2.43 × 1018 GeV is the reduced Planck mass. Conversely, when we express the

SUSY breaking order parameter µ in terms of the gravitino mass, it is given by

µ # 7.9 × 109 GeV ×
( m3/2

15 GeV

)1/2
, (2.4)

where we take 15 GeV for the gravitino mass as the reference value.

The pseudomoduli Φ is stabilized by the 1-loop effects of the massive modes ρ, ρ̄, Z and

Z̄. The supersymmetric mass terms for these massive modes are given by the following mass

matrix:

(ρ, Z)M

(
ρ̄
Z̄

)
= (ρ, Z)

(
−hΦΦ − hZ√

hY
m

− hZ√
hY

m −mZ

) (
ρ̄
Z̄

)
. (2.5)

Integrating out these modes, we can derive the 1-loop effective Kähler potential for the pseu-

domoduli field Φ as [23]

Keff # |Φ|2 − N

32π2
Tr

[
MM †

(
log

MM †

Λ2
− 1

)]
, (2.6)

5The sizes of the mass parameters can be explained by introducing additional gauge dynamics [22].
6In the absence of the last term in (2.1), SUSY is always broken in the model.
7In order to obtain the equal expectation values of the χ, χ̄ fields, we have used the additional condition

from the D-term potential when we gauge the U(1)1 symmetry.

5



Vacuum structure
SUSY preserving vacuum

where Λ is a cut-off scale. Substituting the expression of the mass matrix (2.5) into this

formula, we can obtain the following effective Kähler potential at the leading order of the

scale mZ:

Keff ! |Φ|2 − N

32π2

[
hΦmZ

(
Φ + Φ†) + h2

Φ|Φ|2

− 1

8

hYh3
Φ

h2
Z

mZ

m2
|Φ|2

(
Φ + Φ†) +

1

8

hYh4
Φ

h2
Z

1

m2
|Φ|4 + O(m2

Z)

]
.

(2.7)

Note that the U(1)R breaking terms in the above expression are proportional to the mass

parameter mZ. The 1-loop effective scalar potential for the pseudomoduli field Φ can be

derived from the effective Kähler potential as

Veff !
(

∂2Keff

∂Φ∂Φ†

)−1 ∣∣∣∣
∂W

∂Φ

∣∣∣∣
2

. (2.8)

Then, we can extract the vacuum expectation value and the mass squared of the pseudomoduli

field Φ from the above effective scalar potential, which are given by

|Φ0| !
1

2

mZ

hΦ
, arg Φ0 = 0,

m2
Φ ! N

64π2

hYh4
Φ

h2
Z

µ4

m2
≡ m2

CW.
(2.9)

As we will see, the field configurations finally settle down to this vacuum after inflation. Later,

we consider the gauge mediation effects on the visible sector fields at this vacuum.

There is a SUSY preserving vacuum far away from the origin of the pseudomoduli field

space, in addition to the metastable vacuum. The vacuum expectation values of the fields are

given by

χχ̄ =
m2

hY
, ρρ̄ =

µ2

hΦ
, ZZ̄ =

h2
Z

hYhΦ

m2µ2

m2
Z

,

Y =
h2

Z

hYhΦ

µ2

mZ
, Φ =

h2
Z

hYhΦ

m2

mZ
.

(2.10)

The SUSY breaking vacuum has a nonzero transition probability to the SUSY preserving

vacuum, which can destroy the stability of the SUSY breaking vacuum and hence SUSY

breaking mechanism may not work. However, its decay rate Γvac is evaluated by using the

triangle approximation as [24]

Γvac ∝ e−S, (2.11)

S ∼ h8
Z

h4
Y h4

Φ

(
m

mZ

)4 (
m

µ

)4

. (2.12)

6



soft mass parameters
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16π2
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∂
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�
g2

i

16π2
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�

s

�
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√
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,gravitino mass
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16π2
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i
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16π2
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Inflationary predictions

expression, we obtain the field value evaluated N e-folds before the end of inflation,

yN =

√
2

hY
mxN !






√
2

hY
m for N <

8π2m2

h3
Y M2

Pl

,

hY

2π

√
NMPl for N >

8π2m2

h3
Y M2

Pl

.
(3.11)

We find that a trans-Planckian initial value can be avoided if
√

2/hY m # MPl for the upper

case and
√
NhY < 2π for the lower case. We do not need to worry that the inflaton may

roll off to the SUSY preserving vacuum when we start from such a large initial value of the

inflaton field, because the pseudomoduli field Φ is trapped at the origin of the field space.

The primordial density perturbation generated during inflation is, then, evaluated as

P1/2
R ! 1√

2ε

(
H

2πMPl

)
!






4
√

6π

3

m3

h5/2
Y M3

Pl

for N <
8π2m2

h3
Y M2

Pl

,

2

hY

√
N
3

(
m

MPl

)2

for N >
8π2m2

h3
Y M2

Pl

.

(3.12)

For the COBE/WMAP normalization, P1/2
R ! 4.9 × 10−5 at k = 0.002Mpc−1 [6], we require

m

h1/2
Y

! 5.9 × 1015GeV×






(
hY

3 × 10−3

)1/3

for hY < 3 × 10−3,
(
NCOBE

51

)−1/4

for hY > 3 × 10−3,

(3.13)

where NCOBE is the number of e-folds after the COBE scale leaves the horizon. Note that

when there is the moduli dominated era, NCOBE is expressed as

NCOBE ! 51 +
2

3
log

(
V 1/4

5.4 × 1014 GeV

)
+

1

3
log

(
TR

1010 GeV

)

− 1

3
log

(
Tdom

0.4 GeV

)
+

1

3
log

(
Td

4 MeV

)
,

(3.14)

where Tdom and Td are the cosmic temperature at the time of the moduli domination and that

at the moduli decay, respectively. We will see the validity of the reference values in the next

section. The spectral tilt can be evaluated as

ns = 1 − 6ε + 2η !






1 −
h3

Y M2
pl

2π2m2
! 1 for hY < 3 × 10−3,

1 − 1

NCOBE
! 0.98, for hY > 3 × 10−3,

(3.15)

and the scalar-to-tensor ratio r is given by

r = 16ε !






h10/3
Y

16π4

(
h5/6

Y Mpl

m

)2

for hY < 3 × 10−3,

h2
Y

2π2

1

NCOBE
for hY > 3 × 10−3,

(3.16)
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power spectrum of the curvature perturbation

expression, we obtain the field value evaluated N e-folds before the end of inflation,

yN =

√
2

hY
mxN !






√
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We find that a trans-Planckian initial value can be avoided if
√

2/hY m # MPl for the upper

case and
√
NhY < 2π for the lower case. We do not need to worry that the inflaton may

roll off to the SUSY preserving vacuum when we start from such a large initial value of the

inflaton field, because the pseudomoduli field Φ is trapped at the origin of the field space.

The primordial density perturbation generated during inflation is, then, evaluated as
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For the COBE/WMAP normalization, P1/2
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where NCOBE is the number of e-folds after the COBE scale leaves the horizon. Note that

when there is the moduli dominated era, NCOBE is expressed as
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(3.14)

where Tdom and Td are the cosmic temperature at the time of the moduli domination and that

at the moduli decay, respectively. We will see the validity of the reference values in the next

section. The spectral tilt can be evaluated as
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(3.15)

and the scalar-to-tensor ratio r is given by

r = 16ε !
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Effective interactions of moduli

as

∆−1 ! Td

Tdom
!






(
gdom
∗
gosc
∗

)1/3
Td

Tosc

(
|Φ0|√
3MPl

)−2

, for TR > Tosc,
(

gdom
∗
gR
∗

)1/3
Td

TR

(
|Φ0|√
3MPl

)−2

, for TR < Tosc,

(4.3)

where Td is the decay temperature of the pseudomoduli, which we will estimate later.

We here comment on the stability of the pseudomoduli oscillation. By using the observable

mass parameters, the expectation value of the moduli field on the metastable vacuum is

rewritten as

|Φ0| ! 1.1 × 1014 GeV ×
( rg

3.5

)2 ( m3/2

15 GeV

)( mg̃

1.5 TeV

)−1
. (4.4)

The messengers become tachyonic when the moduli field takes the value,

Φ >
h2

Z

hYhΦ

m2

mZ
! 4.0 × 1014 GeV ×

( m3/2

15 GeV

)( mg̃

1.5 TeV

)−1
. (4.5)

In order for the field configuration to settle down finally to the metastable vacuum, we require

the following condition on the gaugino-to-scalar mass ratio:

rg ! 4.5. (4.6)

Compared to the case in Ref. [20], the amplitude of the oscillation is rather small. Then, the

abundance of gravitinos produced at the time of reheating is comparable to that of gravitinos

due to the moduli decay.

4.2 Moduli decay and DM abundance

Next, we analyze the decay temperature of the pseudomoduli field and the abundance of the

gravitino dark matter. The pseudomoduli can decay into both the visible-sector particles and

gravitinos through the messenger loops which are encoded in the effective interactions of the

pseudomoduli field with the visible-sector fields. We consider the case that the pseudomoduli

field can decay into two Higgs bosons, i.e., mΦ > 2mh. We will see the case that the moduli

mass is small and the field cannot decay into two Higgs bosons in Appendix.

The interaction Lagrangian of the pseudomoduli field with the scalar components of the

visible-sector superfields can be extracted from the moduli dependence of the soft scalar mass

squared, m2
f̃
(Φ), which is given by

m2
f̃
(Φ) =

∑

i

Ci
2

(
g2

i

16π2

)2 [
hYh2

Φ

h2
Z

µ4

m2
+

3

4

h2
Yh3

Φ

h4
Z

µ4mZ

m4

(
Φ + Φ†) + · · ·

]
, (4.7)
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where the first term is the leading order of the scale mZ and leads to the soft masses shown in

section 2. The second term is the next-to-leading order one. There exist higher order terms

as well, but we do not write them explicitly. The effective interactions of the moduli field can

be extracted from this expression as

Lf̃ =
∂m2

f̃
(Φ)

∂Φ
Φf̃ f̃ † + h.c.

! 3

4

∑

i

Ci
2

(
g2

i

16π2

)2 h2
Yh3

Φ

h4
Z

µ4mZ

m4
Φf̃ f̃ † + h.c.

(4.8)

The pseudomoduli field dominantly decays into two Higgs bosons through the messenger loop.

Other scalar fields are too heavy for the pseudomoduli field to decay into them. The decays

into the standard model gauge bosons are sub-dominant because the effective interactions

of the pseudomoduli field with the gauge bosons (shown in Appendix) are suppressed by a

1-loop factor more than the interaction given above. The decay width is estimated from this

effective interaction (4.8) as

ΓH ! 24π3

N2

x2
H

x2
g

1

h4
Φ

(
mΦmg̃

MPlm3/2

)2

mΦ, (4.9)

where xH and xg are defined as

xH ≡ g4
2

(4π)4
· 3

4
+

g4
Y

(4π)4
· 5

3
· 1

4
! 6 × 10−6, (4.10)

xg ≡
g2
3

(4π)2
! 9.4 × 10−3. (4.11)

We have used the expressions of the observable mass parameters such as the gluino mass mg̃.

The moduli decay produces large entropy in the universe and the temperature after the decay

can be estimated from the decay width (4.9) as

Td !
√

ΓHMPl

! 4.4 MeV ×
( rg

3.5

)−2 ( mg̃

1.5 TeV

)3 ( m3/2

15 GeV

)−1 ( mΦ

300 GeV

)−1/2
.

(4.12)

The temperature is required to be above 2 MeV so that the standard BBN properly occurs.10

This requirement constrains on the parameters in our model.

We next calculate the number density of gravitinos from the pseudomoduli decay. The

decay into the longitudinal mode of gravitino (would-be goldstino) is the dominant process.
10 Baryogenesis must take place before the BBN. The required baryon-to-photon ratio is nB/nγ ∼ 6×10−10

[6]. In the case that the moduli oscillation dominates the energy density of the universe, larger baryon
asymmetry must be generated in order to take into account the entropy production from the moduli decay.
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The interaction Lagrangian with the longitudinal mode can be read off from the effective

Kähler potential (2.7),

L3/2 ! − N

(16π)2

hYh4
Φ

h2
Z

( µ

m

)2
Φ†ψ̄3/2ψ3/2 + h.c., (4.13)

where ψ3/2 denotes the gravitino. Then, the partial decay width of the pseudomoduli field

can be calculated as

Γ3/2 !
1

192π

(
m2

Φ

MPlm3/2

)2

mΦ, (4.14)

where we have used the expressions of the observable mass parameters. Compared to the total

decay width (4.9), the decay width into gravitinos (4.14) is small by the quartic dependence

of the coupling hΦ. The number density of gravitinos is expressed as

n3/2

s
=

3

4

Td

mΦ
B3/2 × 2, (4.15)

where B3/2(= Γ3/2/ΓH) is the branching fraction into two gravitinos and s is the entropy

density of the universe. The branching fraction is given by

B3/2 !
1
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N2

(4π)4

x2
g

x2
H

h4
Φ

(
mΦ

mg̃

)2

. (4.16)

Then, the density parameter of non-thermally produced gravitinos is estimated as

Ω(d)
3/2 h2 ! 0.033 ×

( rg

3.5

)2 ( mΦ

300 GeV

)9/2 ( mg̃

1.5 TeV

)−3
. (4.17)

This quantity is required to be below the present dark matter abundance, ΩDM h2 ! 0.11.

This gives another constraint on the parameters in our model.

Since we have calculated the decay temperature of the moduli field, we can estimate the

dilution factor ∆−1 due to the moduli domination before the decay. We here require that

the reheating temperature is smaller than the temperature at the onset of the pseudomoduli

oscillation, TR ! Tosc. The reason is as follows. If the reheating temperature after inflation is

too high, the abundance of thermally produced gravitinos is too large to explain the present

dark matter abundance even if we include the effect of the dilution by the pseudomoduli

decay.11 Then, from the condition TR ! Tosc, the constraint on the coupling hY can be

expressed in terms of the observable parameters as

hY ! 2.2× 10−3 × 1

N21/34

( rg

3.5

)18/17 ( m3/2

15 GeV

)9/17 ( mΦ

300 GeV

)21/34 ( mg̃

1.5 TeV

)−18/17
. (4.18)

11If the reheating temperature is too low, we cannot neglect the direct gravitino production [27]. We do
not consider such a case.
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Gravitinos from inflaton decay

! 7 × 10−11
(

g∗
200

)− 1
2

(

TR

106GeV

)−1
(

〈φ〉
1015GeV

)2 (

mφ

1012GeV

)2

. (42)

It should be noted that the gravitino abundance is inversely proportional to TR. This feature

is to be contrasted to the thermally produced gravitinos, whose abundance is proportional

to TR.

2. The case of mφ > Λ

When the inflaton mass mφ is larger than Λ, the gravitational effects discussed in Sec. III

and IV are important. If the SUSY breaking sector has Yukawa interactions, the inflaton

decays into the sector via the operators. Besides, the anomalies of SUGRA induce the

inflaton decay into the gauge boson and gauginos of the hidden gauge symmetries. Thus the

hidden quarks and gauge bosons/gauginos are generally produced at the decay for mφ > Λ.

The hidden particles are energetic at the moment when they are produced. Since the

reheating temperature TR is bounded as TR < Λ for almost entire region of the gravitino

mass due to the thermal-gravitino production, the produced hidden particles do not reach

thermal equilibrium. They instead form jets and hadronize by the strong gauge interactions,

followed by cascade decays of the heavy hidden hadrons into lighter ones. The number of the

hidden hadrons produced from each jet, which we call here as the multiplicity NH , depends

on the detailed structure of the hidden sector such as the gauge groups, the number of the

matter multiplets, and a mass spectrum of the hidden hadrons. We expect NH to be in the

range of O(1 − 102).

The hidden hadrons should eventually decay and release their energy into the visible

sector, since otherwise they will easily overclose the universe. The gravitinos are likely to be

produced in the decays of the hidden hadrons as well as in the cascade decay processes in

jets. This happens, e.g. through the kinetic mixings of the hidden matters, and especially

if z is a bound state of the hidden (s)quarks. Note that the goldstino is massless in the

global SUSY limit and it is in the hidden sector with renormalizable couplings to other

hidden (s)quark/gauge fields (and therefore hadrons). Thus, the goldstinos are expected to

be produced by the hidden hadrons, though the precise production rate depends on details

of the hidden sector. We denote the averaged number of the gravitinos produced per each

jet as N3/2. Here we assume each hidden hadron produces one gravitino in the end, and use
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FIG. 2: Contours of the lower bound on TR in units of GeV. We set g∗ = 228.75 and Yt = 0.6.

For details of the models, see Sec. VE.

model-dependent, it is expected to be of the order of Λ. Hereafter we simply assume q

mz ! Λ ! √
m3/2. (40)

We discuss the cases of mφ > Λ and mφ < Λ separately.

1. The case of mφ < Λ

As we have seen in Sec. II, the inflaton decays into a pair of the gravitinos. The gravitino

pair production is effective especially for a low-scale inflation model with mφ < mz. The

gravitino production rate is given by

Γ(pair)
3/2 !

1

32π
〈φ〉2 m3

φ (41)

for mφ < mz ! Λ. Here we have assumed the minimal Kähler potential with a soft scalar

mass of z and 〈z〉 % 1. The gravitino abundance is then

Y3/2 = 2
Γ(pair)

3/2

Γφ

3TR

4mφ
,

q The scalar mass mz can be smaller than Λ. If this is the case, the pair-gravitino production will be

affected.
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Our scenario

gravitino problem from inflaton decay does not 
occur because of high reheating temperature
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Our model
✓Hybrid inflation is embedded in the SUSY-breaking model
✓Moduli oscillation can dilute gravitinos

Hybrid inflation moduli field oscillates 
around the meta-stable vacuum

All the fields are needed for SUSY-breaking !!


