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History of our Universe
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Inflation in Early Universe

• Cosmological inflation (a phase of ‘rapid’ accelerated expansion) predicts
homogeneity of our Universe at large scales, its spatial flatness, large size and
entropy, and the almost scale-invariant spectrum of cosmological perturbations (in
good agreement with the WMAP measurements of the CMB radiation spectrum)

• Inflation is a paradigm, not a theory! Known theoretical mechanisms of
inflation use a slow-roll scalar field (called inflaton) with proper scalar potential

• The scale of inflation is well beyond the electro-weak scale, ie. well be-
yond the SM ! Inflationary stage in the early Universe is the most powerful HEP
accelerator in the Nature ( > 1010 TeV ). Inflation is a great window to HEP!

• The nature of the inflaton and the origin of its scalar potential are the big
mysteries. Knowing the origin of inflaton implies knowing its interactions which
lead to definite physical predictions about inflation.
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Higgs (with nonmiminal coupling to gravity) as the inflaton

• was proposed by Bezrukov and Shaposhnikov (2008), assuming no new
physics beyond the Standard Model up to the Planck scale.

• The nonminimal coupling is required by quantum renormalization in curved
spacetime.

• We assume that there is the new physics beyond the Standard Model, and
it is given by supersymmetry. Then it is natural to search for the most economical
mechanisms of inflation (in particular, with Higgs as the inflaton) in the context of
supergravity.
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Review of Higgs inflation (I)

Consider the 4D Lagrangian

LJ =
√
−gJ

{
−

1

2
(1 + ξφ2J)RJ +

1

2
gµν
J ∂µφJ∂νφJ − V (φJ)

}
(1)

where we have introduced the real scalar field φJ(x), nonminimally coupled to
gravity (with the coupling constant ξ) in Jordan frame, with the Higgs-like scalar
potential

V (φJ) =
λ

4
(φ2J − v2)2 (2)

We use the units ! = c = MPl = 1, where MPl is the reduced Planck mass,
with the spacetime signature (+,−,−,−).

The action (1) can be rewritten to Einstein frame by redefining the metric via a
Weyl transformation,

gµν =
gµν
J

(1 + ξφ2J)
(3)
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Review of Higgs inflation (II)

Then one gets the standard Einstein-Hilbert term (−1
2R) for gravity. However, it

also leads to a nonminimal kinetic term of the scalar field φJ. To get the canonical
kinetic term, a scalar field redefinition is needed, φJ → ϕ(φJ), subject to the
condition

dϕ

dφJ
=

√
1 + ξ(1 + 6ξ)φ2J

1 + ξφ2J
(4)

As a result, the nonminimal theory (1) is classically equivalent to the standard
(canonical) theory of the scalar field ϕ(x) minimally coupled to gravity,

LE =
√
−g

{
−

1

2
R +

1

2
gµν∂µϕ∂νϕ− V (ϕ)

}
(5)

with the scalar potential

V (ϕ) =
V (φJ(ϕ))

[1 + ξφ2J(ϕ)]
2

(6)
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Review of Higgs inflation (III)

Given a large positive ξ $ 1, in the small field limit one finds from eq. (4) that
φJ ≈ ϕ, whereas in the large ϕ limit one gets

ϕ ≈
√

3

2
log(1 + ξφ2J) (7)

Equation (6) then yields a scalar potential:
(i) in the very small field limit, ϕ <

√
2
3ξ

−1, as

Vvs(ϕ) ≈
λ

4
ϕ4 (8)

(ii) in the small field limit,
√

2
3ξ

−1 < ϕ&
√

3
2, as

Vs(ϕ) ≈
λ

6ξ2
ϕ2, (9)
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Review of Higgs inflation (IV)

(iii) and in the large field limit, ϕ$
√

2
3ξ

−1, as

V (ϕ) ≈
λ

4ξ2



1 − exp



−
√

2

3
ϕ








2

(10)

We have assumed here that ξ $ 1 and vξ & 1.

Identifying inflaton with Higgs particle requires the parameter v to be the order
of weak scale, and the coupling λ be the Higgs boson selfcoupling at the infla-
tionary scale. The Higgs-like scalar potential is perfectly suitable to support a
slow-roll inflation, while its consistency with the COBE normalization condition for
the observed CMB amplitude of density perturbations (eg., at the e-foldings num-
ber Ne = 50 ÷ 60) gives rise to ξ/

√
λ ≈ 104 ÷ 105. The scalar potential (9)

corresponds to the post-inflationary matter-dominated epoch with the oscillating
inflaton field ϕ of the frequency

ω =

√
λ

3
ξ−1 (11)
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Inflation in Starobinsky model

Viable inflationary models can be also easily constructed in f(R)-gravity theories,

S =
∫

d4x
√
−g f(R) (12)

whose function f(R) begins with the Einstein-Hilbert term, while the rest takes
the form R2C(R) for R → ∞, with a slowly varying function C(R). The simplest
(Starobinsky) model is given by C(R) = const. (= 0 with

f(R) = −
1

2

(

R −
R2

6M2

)

(13)

It is well known as the excellent model of chaotic inflation. M actually coincides
with the rest mass of the scalar particle (scalaron/inflaton) appearing in f(R)
gravity. The model fits the observed amplitude of scalar perturbations ifM/MPl ≈
1.5 · 10−5(50/Ne), and gives rise to the spectral index ns − 1 ≈ −2/Ne ≈
−0.04(50/Ne) and the scalar-to-tensor ratio r ≈ 12/N2

e ≈ 0.005(50/Ne)2,
in terms of the e-foldings number Ne ≈ (50 ÷ 55) depending upon details of
reheating after inflation. The model (13) remains viable, being in agreement with
the WMAP7 observations of ns = 0.963 ± 0.012 and r < 0.24 (with 95% CL).
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f(R) gravity and quintessence (I)

f(R) gravity theory is classically equivalent to the scalar-tensor gravity. In order
to derive the corresponding scalar potential, one rewrites the theory (12) to the
equivalent form

SA =
∫

d4x
√
−g [AR − Z(A)] (14)

where the ‘Lagrange multiplier’ A has been introduced. Via eliminating the scalar
field A by its equation of motion from the action (14) one gets back the original
action (12) provided that the functions f and Z are related via Legendre transfor-
mation,

f(R) = RA(R) − Z(A(R)) (15)

It follows, in particular, that

Z ′(A) = R and f ′(R) = A (16)

where the primes denote the derivatives with respect to the given argument.
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f(R) gravity and quintessence (II)

A Weyl transformation

gµν → gµν exp



−
√

2

3
ϕ



 (17)

with the conformal factor

exp




√

2

3
ϕ



 = A (18)

allows us to bring the action (14) to the Einstein frame with the canonical kinetic
terms,

Sϕ =
∫

d4x
√
−g

{

−
1

2
R +

1

2
gµν∂µϕ∂νϕ+

1

2
exp

[
−4ϕ√

6

]

Z(A(ϕ))

}

(19)

in terms of the physical (and canonically normalized) scalar field ϕ, with the scalar
potential

V (ϕ) = −
1

2
exp

[
−4ϕ√

6

]

Z



exp




√

2

3
ϕ







 (20)
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Quintessence in the the Starobinsky case

In the special case

fS(R) = −
1

2

(
R −

1

6M2R2
)

(21)

one finds

V (ϕ) =
3

4
M2



1 − exp



−
√

2

3
ϕ








2

(22)

This inflaton scalar potential is the same as the one in eq. (10) provided that we
identify the couplings as

3M2 =
λ

ξ2
(23)

Therefore, the inflationary dynamics in the Higgs inflation and the Starobinsky
inflation are essentially the same. In particular, the inflaton mass is given by

M =
1

ξ

√
λ

3
= ω (24)
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Nonmiminal coupling in supergravity (I)

In 4D, N=1 supersymmetry, gravity is to be extended to N=1 supergravity, while a
scalar field should be complexified and become the leading complex scalar field
component of a chiral (scalar) matter supermultiplet. In a curved superspace of
N=1 supergravity, the chiral matter supermultiplet is described by a covariantly
chiral superfield Φ obeying the constraint ∇•

α
Φ = 0 in the notation of Wess and

Bagger. The standard (generic and minimally coupled) matter-supergravity action
reads

SMSG = −3
∫

d4xd4θE−1 exp
[
−

1

3
K(Φ,Φ)

]
+

{∫
d4xd2θEW (Φ) + H.c.

}

(25)
in terms of the Kähler potential K and the superpotential W of the chiral super-
matter, the full density E and the chiral density E of the superspace supergravity.
It is convenient to introduce the notation

Ω = −3exp
[
−

1

3
K

]
or K = −3 ln

[
−

1

3
Ω

]
(26)
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Nonmiminal coupling in supergravity (II)

The nonminimal matter-supergravity coupling in superspace reads

SNM =
∫

d4xd2θEX(Φ)R + H.c. (27)

in terms of the chiral functionX(Φ) and the N=1 chiral scalar supercurvature su-
perfieldR obeying∇•

α
R = 0. In terms of the field components of the superfields

the nonminimal action (27) is given by
∫

d4xd2θEX(Φ)R + H.c. = −
1

6

∫
d4x

√
−gX(φc)R + H.c. + . . . (28)

where the dots stand for the fermionic terms, and φc = Φ| = φ+iχ is the leading
complex scalar field component of the superfield Φ. Given X(Φ) = −ξΦ2 with
the real coupling constant ξ, we find the bosonic contribution

SNM,bos. =
1

6
ξ

∫
d4x

√
−g

(
φ2 − χ2

)
R (29)

The supersymmetrizable non-minimal coupling reads
[
φ2c + (φ

†
c)

2
]
R, and not

(φ
†
cφc)R.
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Nonminimal coupling in supergravity (III)

The manifestly supersymmetric nonminimal action (in Jordan frame) reads

S = SMSG + SNM (30)
In curved superspace of N=1 supergravity the (Siegel’s) chiral integration rule

∫
d4xd2θELch =

∫
d4xd4θE−1Lch

R
(31)

applies to any chiral superfield Lagrangian Lch with ∇•
α
Lch = 0. It is, therefore,

possible to rewrite eq. (30) to the equivalent form

SNM =
∫

d4xd4θE−1
[
X(Φ) + X(Φ)

]
(32)

We conclude that adding SNM to SMSG is equivalent to the simple change of the
Ω-potential as

Ω → ΩNM = Ω+ X(Φ) + X̄(Φ) (33)
Because of eq. (26), it amounts to the change of the Kähler potential as

KNM = −3 ln

[

e−K/3 −
X(Φ) + X(Φ)

3

]

(34)
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Nonminimal coupling in supergravity (IV)

The scalar potential in the matter-coupled supergravity (25) is given by

V (φ, φ̄) = eG




(
∂2G

∂φ∂φ̄

)−1
∂G

∂φ

∂G

∂φ̄
− 3



 (35)

in terms of the single (Kähler-gauge-invariant) function

G = K + ln |W |2 (36)

Hence, in the nonminimal case (30) we have

GNM = KNM + ln |W |2 (37)

Contrary to the bosonic case, one gets a nontrivial Kähler potential KNM, ie. a
Non-Linear Sigma-Model (NLSM) as the kinetic term of φc = φ+ iχ. Since the
NLSM target space has a nonvanishing curvature, no field redefinition exist that
could bring the kinetic term to the free (canonical) form with its Kähler potential
Kfree = ΦΦ.
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F(R) supergravity

F(R) supergravity is the 4D, N=1 supersymmetric extension of f(R) gravity. It is
most nicely formulated in a curved chiral superspace (Gates Jr., SVK, 2009),

S =
∫

d4xd2θ EF(R) + H.c. (38)

in terms of a holomorphic function F(R) of the covariantly-chiral scalar curvature
superfield R, and the chiral superspace density E . The chiral N = 1 superfield
R has the scalar curvature R as the field coefficient at its θ2-term. The chiral
superspace density E (in a WZ gauge) reads

E = e
(
1 − 2iθσaψ̄

a + θ2B
)

(39)

where e =
√
−g, ψa is gravitino, and B = S − iP is the complex scalar auxiliary

field (it does not propagate in the theory (38) despite of the apparent presence
of the higher derivatives). The F(R) supergravity is classically equivalent to the
standard N=1 Poincaré supergravity minimally coupled to the chiral scalar super-
field, via the supersymmetric Legendre-Weyl-Kähler transform (SVK, 2010).
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F(R) supergravity and f(R) gravity

A relation to the f(R)-gravity theories is established by dropping the gravitino
(ψa = 0) and restricting the auxiliary field B to its real (scalar) component, B =
3X with X = X. Then the bosonic Lagrangian takes the form

L = 2F ′
[
1
3R + 4X2

]
+ 6XF (40)

It follows that the auxiliary field X obeys an algebraic equation of motion,

3F + 11F ′X + F ′′
[
1
3R + 4X2

]
= 0 (41)

In those equations F = F(X) and the primes denote the derivatives with respect
toX. Solving eq. (41) forX and substituting the solution back into eq. (40) results
in the bosonic function f(R). The physical sector of the F(R) supergravity is
larger than that of the usual supergravity (ie. graviton and gravitino) due to the
extra scalar (inflaton), its pseudo-scalar superpartner (axion) and inflatino.
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Chaotic inflation in F(R) supergravity (I)

When F(R) = f0−1
2f1R with some (non-vanishing and complex) coefficients f0

and f1, one recovers the standard pure N=1 Poincaré supergrvity with a negative
cosmological term. The relevant term for the slow-roll chaotic inflation in F(R)
supergravity is cubic in R. We studied the case

F(R) = −1
2f1R + 1

2f2R2 − 1
6f3R3 (42)

whose real coupling constants f1,2,3 are of (mass) dimension 2, 1 and 0, respec-
tively. The stability conditions (ie. the absence of ghost and tachyonic degrees
of freedom) require f1 > 0 and f3 > 0, whereas the stability of the bosonic
embeddding in F(R) supergravity requires F ′(X) < 0. For the choice (42) the
last condition implies f2

2 < f1f3. For simplicity, we used the stronger conditions
f3 $ 1, f2

2 $ f1 and f2
2 & f1f3. The first one is needed to have inflation at the

curvatures much less thanM2
Pl (and to meet observations), while the second one

is needed to have the scalaron (inflaton) mass be much less thanMPl, in order to
avoid large (gravitational) quantum loop corrections after the end of inflation up to
the present time.
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Chaotic inflation in F(R) supergravity (II)

Equation (40) with the Ansatz (42) reads

L = −5f3X4 + 11f2X3 − (7f1 + 1
3f3R)X2 + 2

3f2RX − 1
3f1R (43)

and gives rise to a cubic equation on X,

X3 −
(
33f2
20f3

)

X2 +

(
7f1
10f3

+
1

30
R

)

X −
f2

30f3
R = 0 (44)

The high curvature regime including inflation is described by

δR < 0 and
|δR|
R0

$
(

f2
2

f1f3

)1/3

(45)

where we have used the notation R0 = 21f1/f3 > 0 and δR = R + R0. In the
high-curvature regime (45) the f2-dependent terms in eqs. (43) and (44) can be
neglected, and we get

X2 = − 1
30δR and L = −

f1
3

R +
f3
180

(R + R0)
2 (46)
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Chaotic inflation in F(R) supergravity (III)

The value of the coefficient R0 is not important in the high curvature regime. In
fact, it may be changed to a desired value by adding a constant term to the Ansatz
(42). Hence, eq. (46) reproduces the Starobinsky inflationary model since inflation
occurs at |R| $ R0. We now identify

f3 =
15

M2 (47)

The only significant difference with respect to the original (R + R2) inflationary
model is the scalaron mass that becomes much larger than M in supergravity,
soon after the end of inflation when δR becomes positive. However, it only makes
the scalaron decay faster and creation of the usual matter (reheating) more effec-
tive.

The whole series in powers of R may also be considered, instead of the lim-
ited Ansatz (42). The only necessary condition for embedding inflation is that f3
should be anomalously large.

22



F(R) supergravity and nonminimal coupling (I)

Let’s consider the nonmiminal action (30) under the slow-roll condition, when the
contribution of the kinetic term is negligible. Then eq. (30) takes the truly chiral
form

Sch. =
∫

d4xd2θE [X(Φ)R + W (Φ)] + H.c. (48)

When choosing X as the independent chiral superfield, it can be rewritten to

Sch. =
∫

d4xd2θE [XR−Z(X)] + H.c. (49)

where we have introduced the notation

Z(X) = −W (Φ(X)) (50)
In its turn, the action (49) is equivalent to the chiral F(R) supergravity action (38),
whose function F is related to the function Z via Legendre transformation,

Z = XR− F , F ′(R) = X and Z′(X) = R (51)
It implies the equivalence between the reduced action (48) and the corresponding
F(R) supergravity whose F -function obeys eq. (51).
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F(R) supergravity and nonminimal coupling (II)

Consider now the special case of eq. (48) when the superpotential is given by

W (Φ) =
1

2
mΦ2 +

1

6
λΦ3 (52)

with the real coupling constants m > 0 and λ > 0. The model (52) is known as
the Wess-Zumino (WZ) model in 4D, N=1 rigid supersymmetry. It has the most
general renormalizable scalar superpotential in the absence of supergravity. In
terms of the field components, it gives rise to the Higgs-like scalar potential.

For simplicity, let’s take a cubic superpotential,

W3(Φ) =
1

6
λΦ3 (53)

or just assume that this term dominates in the superpotential (52), and choose
the X(Φ)-function in eq. (48) in the form

X(Φ) = −ξΦ2 (54)
with a large positive coefficient ξ, ξ > 0 and ξ $ 1, in accordance with eq. (28).

24



F(R) supergravity and nonminimal coupling (III)

Let’s also simplify the F -function of eq. (42) by keeping only the most relevant
cubic term,

F3(R) = −
1

6
f3R3 (55)

It is straightforward to calculate the Z-function for the F -function (55) by using
eq. (51). We find

−X =
1

2
f3R2 and Z′(X) =

√
−2X

f3
(56)

Integrating the last equation with respect to X yields

Z(X) = −
2

3

√
2

f3
(−X)3/2 = −

2
√

2

3

ξ3/2

f
1/2
3

Φ3 (57)

In accordance to eq. (50), the F(R)-supergravity Z-potential (57) implies the
superpotential

WKS(Φ) =
2
√

2

3

ξ3/2

f
1/2
3

Φ3 (58)
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F(R) supergravity and nonminimal coupling (IV)

The derived superpotential (58) coincides with the superpotential (53) of the WZ-
model, provided that we identify the couplings as

f3 =
32ξ3

λ2
(59)

We thus conclude that the original nonminimally coupled matter-supergravity the-
ory (30) in the slow-roll approximation with the superpotential (53) is classically
equivalent to the F(R)-supergravity theory with the F -function given by eq. (55)
when the couplings are related by eq. (59). The inflaton mass M in the super-
symmertic case is given by

M2 =
15λ2

32ξ3
(60)

The value of f3 is of the order O(1010). Therefore, according to eq. (59), the
value of ξ in the supersymmetric case is expected to be lower, ξ ≈ O(1010/3),
when compared to the bosonic case with ξ ≈ O(105). We have assumed that λ
is of the order one here, λ ≈ O(1).
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Conclusion (I)

The established equivalence begs for a fundamental reason. In the high-curvature
(inflationary) regime the R2-term dominates over the R-term in the Starobinsky
f(R)-gravity function (13), while the coupling constant in front of the R2-action
(12) is dimensionless. The Higgs slow-roll inflation is based on the Lagrangian
(1), where the ξφ2J dominates over 1 (in fact, overM2

Pl) in front of the gravitational
R-term, and the relevant scalar potential is given by V4 = 1

4λφ
4
J since the pa-

rameter v is irrelevant for inflation, while the coupling constants ξ and λ are also
dimensionless. Therefore, both relevant actions are globally conformal. Inflation
spontaneously breaks that conformal symmetry.

The supersymmetric case is similar: the nonminimal action (48) with the X-
function (54) and the superpotential (53) also has only dimensionless coupling
constants ξ and λ, while the same it true for the F(R)-supergravity action with
the F -function (55), whose coupling constant f3 is dimensionless too. There-
fore, those actions are both globally superconformal, while inflation spontaneously
breaks the superconformal invariance.
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Conclusion (II)

A spontaneous breaking of the conformal symmetry, and of the scale invariance,
in particular, necessarily leads to Goldstone particle (dilaton) associated with
the spontaneously broken scale transformations (dilatations). So, perhaps, the
scalaron (inflaton) of Sec. 3 should be identified with the Goldstone dilaton re-
lated to the spontaneously broken scale invariance (dilatations)!

The equivalence between the non-minimally coupled supergravity and the F(R)
supergravity is expected to hold even after inflation, during initial reheating with
harmonic oscillations. In the bosonic case the equivalence holds until the inflaton
field value is higher than ω ≈ MPl/ξ ≈ 10−5MPl. In the supersymmetric case
we find ω ≈ MPl/ξ

3/2 ≈ 10−5MPl.
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