Dark Goo:

Bulk viscosity as an alternative to dark energy

Jean-Sébastien Gagnon¹ and Julien Lesgourgues^{2,3,4}

¹Technische Universität Darmstadt ²École Polytechnique Fédérale de Lausanne ³CERN Theory Division ⁴LAPTh (CNRS - Université de Savoie)

DESY Workshop: Cosmology Meets Particle Physics Hamburg, September 27th-30th 2011

JCAP 09(2011)026

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Motivation and Objectives

2 Theoretical Concepts and Presentation of the Model

- Bulk Viscosity and Expansion
- The "Dark Goo" Model
- Validity of the Hydrodynamic Approximation

3 Results

- Preliminaries
- Background Evolution
- Linear Perturbations
- Compatibility with Observations

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Motivation and Objectives

2 Theoretical Concepts and Presentation of the Model

- Bulk Viscosity and Expansion
- The "Dark Goo" Model
- Validity of the Hydrodynamic Approximation

3 Results

- Preliminaries
- Background Evolution
- Linear Perturbations
- Compatibility with Observations

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Motivation and Objectives

- Experimental: Results from SNIa, CMB peaks, BAO, LSS
 - \rightarrow Universe accelerates now
 - \rightarrow Universe is made of 70% of a dark "something"
- Theoretical: Many models/mechanisms on the market (cosmological constant, quintessence, etc)
 - \rightarrow None seems satisfactory
 - → Either suffer from severe fine tuning problems, lead to instabilities, are ruled out or are waiting further analysis
- Bottom line: Door is opened for new models to explain the acceleration
- Objective: Focus on a model that includes bulk viscosity

・ロト ・ 同ト ・ ヨト・

Motivation and Objectives

- Experimental: Results from SNIa, CMB peaks, BAO, LSS
 - \rightarrow Universe accelerates now
 - \rightarrow Universe is made of 70% of a dark "something"
- Theoretical: Many models/mechanisms on the market (cosmological constant, quintessence, etc)
 - \rightarrow None seems satisfactory
 - → Either suffer from severe fine tuning problems, lead to instabilities, are ruled out or are waiting further analysis
- Bottom line: Door is opened for new models to explain the acceleration
- Objective: Focus on a model that includes bulk viscosity

< ∃⇒

Motivation and Objectives

2 Theoretical Concepts and Presentation of the Model

- Bulk Viscosity and Expansion
- The "Dark Goo" Model
- Validity of the Hydrodynamic Approximation

3 Results

- Preliminaries
- Background Evolution
- Linear Perturbations
- Compatibility with Observations

ヘロト ヘ戸ト ヘヨト ヘヨト

Bulk Viscosity and Expansion

- Hydrodynamics is a theory of "fluid cells" (effective theory)
- Bulk viscosity characterizes deviations from local equilibrium → Modifies the energy-momentum tensor
- Effect of bulk viscosity on a FRW expansion¹

$$\dot{
ho} = -rac{3\dot{a}}{a}(
ho+
ho_{
m eff})$$

where $p_{\rm eff} = p - 3\zeta \frac{\dot{a}}{a}$ and $\zeta > 0$ is the bulk viscosity

- Remarks:
 - Shift between EOS and measured pressures
 - Gives a negative contribution to the pressure \rightarrow May act as dark energy
 - ζ must be computed from a more fundamental theory

¹Weinberg, "Gravitation and Cosmology" (1972)

Bulk Viscosity and Expansion

- Hydrodynamics is a theory of "fluid cells" (effective theory)
- Bulk viscosity characterizes deviations from local equilibrium → Modifies the energy-momentum tensor
- Effect of bulk viscosity on a FRW expansion¹

$$\dot{
ho} = -rac{3\dot{a}}{a}(
ho+
ho_{
m eff})$$

where $p_{\rm eff} = p - 3\zeta \frac{\dot{a}}{a}$ and $\zeta > 0$ is the bulk viscosity

- Remarks:
 - Shift between EOS and measured pressures
 - Gives a negative contribution to the pressure
 - \rightarrow May act as dark energy
 - ζ must be computed from a more fundamental theory

¹Weinberg, "Gravitation and Cosmology" (1972)

Motivation and Objectives

Theoretical Concepts and Presentation of the Model Bulk Viscosity and Expansion

• The "Dark Goo" Model

Validity of the Hydrodynamic Approximation

3 Results

- Preliminaries
- Background Evolution
- Linear Perturbations
- Compatibility with Observations

ヘロト ヘ戸ト ヘヨト ヘヨト

The "Dark Goo" Model (1)

- Need some microscopic physics to "personify" $\boldsymbol{\zeta}$
- SM particles cannot produce any ζ in the late universe
 → Need to add a new energy component to the universe
- The model:
 - Add self-interacting scalar particles with Lagrangian:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_0^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$

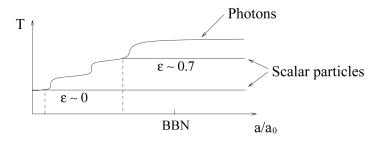
- Assumptions:
 - Scalar and SM particles are in thermal equilibrium in the early universe, and decouple from each other afterward
 - Hydrodynamics is valid until the present time
 - Weak coupling (technical necessity)
- Free parameters: λ , m_0 , $\epsilon \equiv T_s/T_\gamma$
- Remark: Very different from quintessence or (generalized) Chaplygin gas models²

TECHNISCHE UNIVERSITAT DARMSTADT

² Fabris et al. (2006), Colistete et al. (2007), Li and Barrow (2009), Velten and Schw 🕮 (201 集 🔖 🧃 🤊 🤉

The "Dark Goo" Model (1)

- Need some microscopic physics to "personify" $\boldsymbol{\zeta}$
- SM particles cannot produce any ζ in the late universe
 → Need to add a new energy component to the universe
- The model:
 - Add self-interacting scalar particles with Lagrangian:


$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m_0^2 \phi^2 - \frac{\lambda}{4!} \phi^4$$

- Assumptions:
 - Scalar and SM particles are in thermal equilibrium in the early universe, and decouple from each other afterward
 - Hydrodynamics is valid until the present time
 - Weak coupling (technical necessity)
- Free parameters: λ , m_0 , $\epsilon \equiv T_s/T_\gamma$
- Remark: Very different from quintessence or (generalized) Chaplygin gas models²

² Fabris et al. (2006), Colistete et al. (2007), Li and Barrow (2009), Velten and Schwarz (2011) + < = + = =

The "Dark Goo" Model (2)

- ϵ controls the scalar-photon decoupling time
- Decoupling before BBN $\rightarrow \epsilon < 0.7$
- Scalars add relativistic degrees of freedom (*N*_{eff})
 → Might affect the physics of the CMB

→ Ξ → < Ξ →</p>

< 🗇 🕨

The "Dark Goo" Model (3)

• Pressure and density for the scalar component are:

$$\rho_{s} = \frac{m_{0}^{2}T_{s}^{2}}{2\pi^{2}}K_{2}\left(\frac{m_{0}}{T_{s}}\right) + O(\lambda T_{s}^{4})$$

$$\rho_{s} = \frac{m_{0}^{2}T_{s}}{2\pi^{2}}\left[T_{s}K_{2}\left(\frac{m_{0}}{T_{s}}\right) - \frac{m_{0}}{2}\left(K_{1}\left(\frac{m_{0}}{T_{s}}\right) + K_{3}\left(\frac{m_{0}}{T_{s}}\right)\right)\right]$$

• Bulk viscosity for the scalar component is³:

$$\zeta = \left(\frac{\tilde{m}^4}{\lambda^4 m_{\rm th}}\right) \left(\frac{m_{\rm th}}{T_s}\right)^{\kappa_3} e^{\kappa_1} e^{\kappa_2 m_{\rm th}/T_s}$$

where $m_{
m th}^2=m_0^2+\lambda T_s^2/24$ and $\tilde{m}^2=m_0^2-eta(\lambda)T_s^2/48$

• Physics of bulk viscosity:

- Proportional to the mean free time
- Proportional to breaking of conformal invariance

³Jeon (1995)

伺 とくほ とくほとう

Motivation and Objectives

2 Theoretical Concepts and Presentation of the Model

- Bulk Viscosity and Expansion
- The "Dark Goo" Model
- Validity of the Hydrodynamic Approximation

3 Result

- Preliminaries
- Background Evolution
- Linear Perturbations
- Compatibility with Observations

ヘロト ヘ戸ト ヘヨト ヘヨト

Validity of the Hydrodynamic Approximation

- For the concept of bulk viscosity to make sense, hydrodynamics must be valid
- The assumptions of hydrodynamics are:
 - Local equilibrium:

$$rac{\Gamma_s}{H}$$
 > 1 $ightarrow rac{m_0\lambda^4e^{-3m_0/T_s}}{H}$ > 1

- Small inhomogeneities and gravitational instabilities:
 → Results show that linear perturbations are well behaved
- No cavitation:

$$p_{b \max} > \rho_{\mathrm{DE}} \rightarrow \lambda^{3/2} m_0^3 T_s > \left(\frac{3}{16\pi}\right)^{1/2} \rho_{\mathrm{DE}}$$

where $p_{b \max}$ is the tensile strength of the scalar fluid

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Motivation and Objectives

2 Theoretical Concepts and Presentation of the Model

- Bulk Viscosity and Expansion
- The "Dark Goo" Model
- Validity of the Hydrodynamic Approximation

3 Results

Preliminaries

- Background Evolution
- Linear Perturbations
- Compatibility with Observations

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Commercial Break

 New public code (written by J. Lesgourgues) that computes cosmological perturbations and CMB physics:

С	osmic
L	inear
Α	nisotropy
S	olving
S	ystem

- All numerical results presented here are obtained using this code, slightly modified to take into account bulk viscous effects
- Website: http://lesgourg.web.cern.ch/lesgourg/class.html
- Go get it, it's FREE!⁴

⁴Limited time offer. Available while supplies last. Not responsible for misuse of the code. Do physics responsibly.

Parameters in CLASS

Parameters used in CLASS:

 $(\epsilon, \lambda, m_0, \Omega_b, h, A_s, n_s, \tau)$ Scalar sector CDM sector

- where Ω_b : Baryon density fraction
 - *h* : Reduced Hubble parameter
 - *A_s* : Primordial spectrum amplitude
 - *n_s* : Primordial spectrum tilt
 - τ : Reionization optical depth
- More convenient to use:

 $(\epsilon, \lambda, \Omega_m, \Omega_b, h, A_s, n_s, \tau)$

where $\Omega_b + \Omega_{CDM} + \Omega_s = 1$, $\Omega_m \equiv 1 - \Omega_s$ and Ω_s is the scalar density fraction

• Remark: m_0 can be viewed as a function of $(\epsilon, \lambda, \Omega_m, h)$

1 Motivation and Objectives

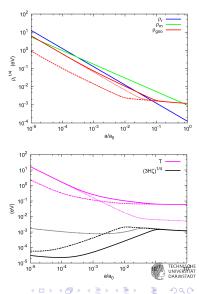
2 Theoretical Concepts and Presentation of the Model

- Bulk Viscosity and Expansion
- The "Dark Goo" Model
- Validity of the Hydrodynamic Approximation

3 Results

- Preliminaries
- Background Evolution
- Linear Perturbations
- Compatibility with Observations

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

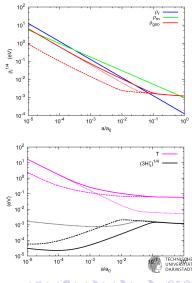

Results for the Background Evolution (1)

- Integrate the Friedmann equations (including bulk viscosity)
- Parameters $(\epsilon, \lambda, \Omega_m, \Omega_b, h)$:
 - Full: (0.7, 0.25, 0.28, 0.05, 0.72)
 - Dashed: (0.1, 0.25, 0.28, 0.05, 0.72)
 - Dotted: $(0.7, 10^{-4}, 0.28, 0.05, 0.72)$

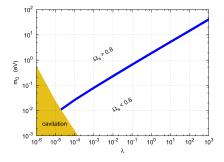
(correspond to $m_0 = 1.0, 1.0, 0.027 \text{ eV}$)

Evolution of densities:

- $T_s \gg m_0$: $\rho_s \propto a^{-4}$, $3H\zeta \ll \rho_s$
- $T_s \sim m_0$: $\rho_s \propto a^{-3}$
- $T_s \ll m_0$: $3H\zeta \sim \rho_s$
- Remarks:
 - Tend to a fixed point with $p_{
 m eff} = -|w|
 ho_s$
 - Fixed point not reached immediately



Results for the Background Evolution (2)


- Parameters $(\epsilon, \lambda, \Omega_m, \Omega_b, h)$:
 - Full: (0.7, 0.25, 0.28, 0.05, 0.72)
 - Dashed: (0.1, 0.25, 0.28, 0.05, 0.72)
 - Dotted: (0.7, 10⁻⁴, 0.28, 0.05, 0.72)

(correspond to $m_0 = 1.0, 1.0, 0.027 \text{ eV}$)

- Varying ϵ :
 - $\epsilon \searrow \Rightarrow T_s \searrow$ $\Rightarrow \mathsf{DE}$ domination happens sooner
 - *ϵ* has effects only at high *T* → Increases relativistic d.o.f.
- Vayring λ (and thus m_0):
 - $\lambda \searrow \Rightarrow m_0 \searrow$ $\Rightarrow DE$ domination happens later
 - $\lambda \nearrow \Rightarrow$ Matter-like period $\nearrow \rightarrow$ Unified model of DM an DE?

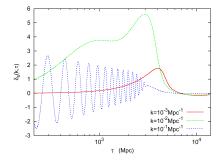
Results for the Background Evolution (3)

- *m*₀ can be viewed as a function of (ε, λ, Ω_m, h)
- Can check that m_0 is independent of ϵ
- Explore parameter space: $(\Omega_m \in [0.2, 0.4], h \in [0.65, 0.75])$ (thin blue band)
- Results with hydro constraints: $\lambda > 2 \times 10^{-5}$ and $m_0 > 0.01$ eV $\lambda \in [2 \times 10^{-5}, 1]$ and $m_0 \in [0.01, 2]$ eV

Motivation and Objectives

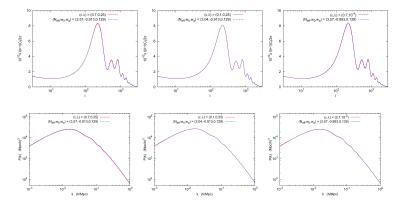
2 Theoretical Concepts and Presentation of the Model

- Bulk Viscosity and Expansion
- The "Dark Goo" Model
- Validity of the Hydrodynamic Approximation


3 Results

- Preliminaries
- Background Evolution
- Linear Perturbations
- Compatibility with Observations

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト


Results for Perturbations (1)

- Density perturbations for 3 modes with $(\epsilon, \lambda) = (0.7, 0.25)$
- All modes are damped out at au pprox 3000 Mpc
 - \rightarrow Equations are stable
- Dark Goo model is similar to any model with negligible perturbations at late times (e.g. wCDM)

Results for Perturbations (2)

- Rad. domination: Extra scalar d.o.f. evolve differently than decoupled neutrinos (i.e. no anisotropic stress tensor)
- Expect larger oscillation amplitudes \rightarrow Higher CMB peaks
- For large $\epsilon = 0.7$: Dark Goo peaks > wCDM peaks
- For small $\epsilon = 0.1$: No significant difference

TECHNISCHE

DARMSTADT

Motivation and Objectives

2 Theoretical Concepts and Presentation of the Model

- Bulk Viscosity and Expansion
- The "Dark Goo" Model
- Validity of the Hydrodynamic Approximation

3 Results

- Preliminaries
- Background Evolution
- Linear Perturbations
- Compatibility with Observations

ヘロト ヘ戸ト ヘヨト ヘヨト

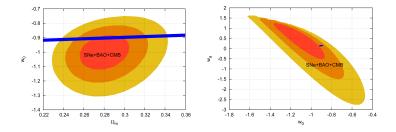
Summary of Results

• Effective neutrino number (at early times):

 $N_{\rm eff} = 3.04 + 2.2\epsilon^4$

Model can account for any value in the range $3.04 < N_{\rm eff} < 3.62$ (or $0 < \epsilon < 0.7$)

• Equation of state parameter:


 $w_0 = -0.9085 + 0.21(\Omega_m - 0.3) + 3\lambda^{-0.4}10^{-4}$

• Time dependence of the dark energy component:

 $w_a = 0.129 + 0.02(\Omega_m - 0.3) + \lambda^{-0.5} 10^{-4}$

where the wCDM parametrization used is⁵ $w(a) = w_0 + w_a(1 - a/a_0)$ ⁵Chevallier and Polarski (2000), Linder (2002)

Compatibility with Observations

- Left panel: Vary $h \in [0.714, 0.724], \lambda \in [2 \times 10^{-5}, 1]$
- Right panel: Vary h, λ in same range, $\Omega_m \in [0.245, 0.306]$
- Bottom line:
 - Dark Goo model compatible with current data
 - Dark Goo model predicts (*w*₀, *w_a*) ∼ (−0.9, 0.13)

イロト イポト イヨト イヨト

- Features of the Dark Goo model:
 - First principles computation of bulk viscosity
 - Discussion in terms of physical properties of particles
 - Model is falsifiable (parameter space bounded)
 - Less fine tuning (compared to quintessence, for example)
- Future work:
 - More rigorous study of hydro assumptions (cavitation in particular)
 - Extend the model to include Dark Matter?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

But really, what is Dark Goo?

Example of a Dark Goo filled universe...

THANK YOU!!!

► < E >

J.-S. Gagnon Dark Goo: Bulk viscosity as an alternative to DE