#### How Sensitive is the CMB to a Single Lens?

#### Ben Rathaus

Tel-Aviv University

September 29, 2011

#### arXiv:1105.2940: B. Rathuas, A. Fialkov and N. Itzhaki JCAP **1106**, 033 (2011)

### **Motivation**

- $\Lambda$ CDM is statistically isotropic.
- Within this framework, weak lensing (WL) is well understood.
- Nevertheless, there exist many anomalies

#### **Motivation**

- $\Lambda$ CDM is statistically isotropic.
- Within this framework, weak lensing (WL) is well understood.
- Nevertheless, there exist many anomalies

| Anomaly                     | Reference                     |
|-----------------------------|-------------------------------|
| "Axis of exil"              | Tegmark et al , Schwarz et al |
| Anomalously large bulk flow | Watkins et al, Feldman et al  |
| WMAP cold spot              | Cruz et al                    |
| Giant rings                 | Kovetz et al                  |

- N

#### **Motivation**

- $\Lambda$ CDM is statistically isotropic.
- Within this framework, weak lensing (WL) is well understood.
- Nevertheless, there exist many anomalies

| Anomaly                     | Reference                     |
|-----------------------------|-------------------------------|
| "Axis of exil"              | Tegmark et al , Schwarz et al |
| Anomalously large bulk flow | Watkins et al, Feldman et al  |
| WMAP cold spot              | Cruz et al                    |
| Giant rings                 | Kovetz et al                  |

• Can they all be due to an anomalously large structure? Cruz et al, Turok

and Spergel, Kovetz et al, Inoue and Silk, Fialkov et al

• Can we detect such a structure by means of WL?

- Our Universe is very nearly Gaussian.
- The CMB undergoes WL (where  $\boldsymbol{\alpha} = \boldsymbol{\nabla} \boldsymbol{\psi}$ ):

- Our Universe is very nearly Gaussian.
- The CMB undergoes WL (where  $\boldsymbol{\alpha} = \boldsymbol{\nabla} \psi$ ):



< 6 k

(4) (5) (4) (5)

- Our Universe is very nearly Gaussian.
- The CMB undergoes WL (where  $\boldsymbol{\alpha} = \boldsymbol{\nabla} \boldsymbol{\psi}$ ):



< 6 k

- Our Universe is very nearly Gaussian.
- The CMB undergoes WL (where  $\boldsymbol{\alpha} = \boldsymbol{\nabla} \psi$ ):



$$\left\langle \psi(\mathbf{l})\psi^*(\mathbf{l}')\right\rangle = (2\pi)^2 \delta(\mathbf{l}-\mathbf{l}')C^{\psi}(l)$$

- Our Universe is very nearly Gaussian.
- The CMB undergoes WL (where  $\boldsymbol{\alpha} = \boldsymbol{\nabla} \psi$ ):



$$\langle \psi(\mathbf{l})\psi^*(\mathbf{l}')\rangle = (2\pi)^2\delta(\mathbf{l}-\mathbf{l}')C^{\psi}(l)$$

• The lensed temperature field is also statistically isotropic  $\langle \tilde{T}(\mathbf{l})\tilde{T}^*(\mathbf{l}')\rangle = (2\pi)^2\delta(\mathbf{l}-\mathbf{l}')\tilde{C}(l)$ 

- Our Universe is very nearly Gaussian.
- The CMB undergoes WL (where  $\boldsymbol{\alpha} = \boldsymbol{\nabla} \psi$ ):



$$\left\langle \psi(\mathbf{l})\psi^{*}(\mathbf{l}')\right\rangle = (2\pi)^{2}\delta(\mathbf{l}-\mathbf{l}')C^{\psi}(l)$$

• The lensed temperature field is also statistically isotropic

$$\left\langle \tilde{T}(\mathbf{l})\tilde{T}^{*}(\mathbf{l}')\right\rangle = (2\pi)^{2}\delta(\mathbf{l}-\mathbf{l}')\tilde{C}(l)$$

but not entirely Gaussian ...

ben.rathaus@gmail.com (Tel-Aviv University) How sensitive is the CMB to a single lens?

#### Generalities

### Considering an anomalously large structure

- Such a structure does not respect statistical isotropy.
- Giant structure  $\longrightarrow$  deflection potential  $\longrightarrow$  deflected *T*-field.

不同 トイモトイモ

# Considering an anomalously large structure

- Such a structure does not respect statistical isotropy.
- Giant structure  $\longrightarrow$  deflection potential  $\longrightarrow$  deflected *T*-field.
- Two relevant deformations:
  - Of the deflection potential:  $\psi^{\Lambda} \rightarrow \psi^{\Lambda} + \delta \psi$ .
  - Of the temperature field:  $T(\hat{\mathbf{n}}) \rightarrow \tilde{T}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}} + \nabla \psi).$
- Both stem from the same structure.
- Both deform one Gaussian field into another Gaussian field.

4 **A** N A **B** N A **B** N

#### Generalities

### Considering an anomalously large structure

- Such a structure does not respect statistical isotropy.
- Giant structure  $\longrightarrow$  deflection potential  $\longrightarrow$  deflected *T*-field.
- Two relevant deformations:
  - Of the deflection potential:  $\psi^{\Lambda} \rightarrow \psi^{\Lambda} + \delta \psi$ .
  - Of the temperature field:  $T(\hat{\mathbf{n}}) \rightarrow \tilde{T}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}} + \nabla \psi).$
- Both stem from the same structure.
- Both deform one Gaussian field into another Gaussian field.
- Nevertheless they are essentially different.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

#### Generalities

### Considering an anomalously large structure

- Such a structure does not respect statistical isotropy.
- Giant structure  $\longrightarrow$  deflection potential  $\longrightarrow$  deflected *T*-field.
- Two relevant deformations:
  - Of the deflection potential:  $\psi^{\Lambda} \rightarrow \psi^{\Lambda} + \delta \psi$ .
  - Of the temperature field:  $T(\hat{\mathbf{n}}) \rightarrow \tilde{T}(\hat{\mathbf{n}}) = T(\hat{\mathbf{n}} + \nabla \psi).$
- Both stem from the same structure.
- Both deform one Gaussian field into another Gaussian field.
- Nevertheless they are essentially different.
- Now construct a S/N ratio.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Beware!! Hand-waving ahead.

Beware!! Hand-waving ahead.

• The deformation of the deflection potential is

$$\psi^{\Lambda} \to \psi^{\Lambda} + \delta \psi.$$

< ロ > < 同 > < 回 > < 回 >

#### Beware!! Hand-waving ahead.

The deformation of the deflection potential is

$$\psi^{\Lambda} \to \psi^{\Lambda} + \delta \psi.$$

- The "signal" is the information held in the deformation,  $\delta\psi$ .
- The "noise" is the background  $\psi^{\Lambda}$ .
- All we know about  $\psi^{\Lambda}$  is through its spectrum  $C^{\psi}$ , so

Beware!! Hand-waving ahead.

The deformation of the deflection potential is

 $\psi^{\Lambda} \to \psi^{\Lambda} + \delta \psi.$ 

- The "signal" is the information held in the deformation,  $\delta\psi$ .
- The "noise" is the background  $\psi^{\Lambda}$ .
- All we know about  $\psi^{\Lambda}$  is through its spectrum  $C^{\psi}$ , so

$$\left(\frac{\mathsf{S}}{\mathsf{N}}\right)^2 = \int \frac{\mathrm{d}\mathbf{l}}{(2\pi)^2} \frac{|\delta\psi(l)|^2}{C^{\psi}(l)}$$

4 **A** N A **B** N A **B** N

#### Beware!! Hand-waving ahead.

The deformation of the deflection potential is

$$\psi^{\Lambda} \to \psi^{\Lambda} + \delta \psi.$$

- The "signal" is the information held in the deformation,  $\delta\psi$ .
- The "noise" is the background  $\psi^{\Lambda}$ .
- All we know about  $\psi^{\Lambda}$  is through its spectrum  $C^{\psi}$ , so

$$\left(\frac{\mathsf{S}}{\mathsf{N}}\right)^2 = \int \frac{\mathrm{d}\mathbf{l}}{(2\pi)^2} \frac{|\delta\psi(l)|^2}{C^{\psi}(l)}$$

#### "Ideal S/N"

A D N A B N A B N A

#### Ideal S/N

#### The ideal S/N

• How come hand-waving was good enough?

$$\left\langle \psi^{\Lambda} \right\rangle = 0 \rightarrow \left\langle \psi^{\Lambda} + \delta \psi \right\rangle = \delta \psi.$$

#### The ideal S/N

• How come hand-waving was good enough?

$$\left\langle \psi^{\Lambda} \right\rangle = 0 \rightarrow \left\langle \psi^{\Lambda} + \delta \psi \right\rangle = \delta \psi.$$

- Though straightforward, difficult to implement.
- Convinient for a given model, as an upper bound.

< ロ > < 同 > < 回 > < 回 >

# The ideal S/N

• How come hand-waving was good enough?

$$\left\langle \psi^{\Lambda} \right\rangle = 0 \rightarrow \left\langle \psi^{\Lambda} + \delta \psi \right\rangle = \delta \psi.$$

- Though straightforward, difficult to implement.
- Convinient for a given model, as an upper bound.
- An example: a void.



**H N** 

- The observable field of the CMB is the (lensed) temperature field.
- The deformed field gives rise to S/N<sub>Realistic</sub>.

- The observable field of the CMB is the (lensed) temperature field.
- The deformed field gives rise to S/N<sub>Realistic</sub>.
- A naïve and *wrong* approach would be to follow the ideal case.

A B F A B F

- The observable field of the CMB is the (lensed) temperature field.
- The deformed field gives rise to S/N<sub>Realistic</sub>.
- A naïve and *wrong* approach would be to follow the ideal case.
- Deformed field  $T \rightarrow \tilde{T}$  belongs to a different type of deformation.

| Case      | Before deformation          |                                       | After de                              | formation                             |
|-----------|-----------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Ideal     | $\langle \psi \rangle = 0;$ | $\langle \psi \psi^*  angle = C^\psi$ | $\langle \psi \rangle = \delta \psi;$ | $\langle \psi \psi^*  angle = C^\psi$ |
| Realistic | $\langle T \rangle = 0;$    | $\langle TT^* \rangle = C^{(0)}$      | $\left< 	ilde{T} \right> = 0;$        | $\langle TT^*  angle = 	ilde{C}$      |

- The observable field of the CMB is the (lensed) temperature field.
- The deformed field gives rise to S/N<sub>Realistic</sub>.
- A naïve and *wrong* approach would be to follow the ideal case.
- Deformed field  $T \rightarrow \tilde{T}$  belongs to a different type of deformation.

| Case      | Before deformation         |                                       | After de                              | formation                             |
|-----------|----------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Ideal     | $\langle \psi  angle = 0;$ | $\langle \psi \psi^*  angle = C^\psi$ | $\langle \psi \rangle = \delta \psi;$ | $\langle \psi \psi^*  angle = C^\psi$ |
| Realistic | $\langle T \rangle = 0;$   | $\langle TT^* \rangle = C^{(0)}$      | $\left< \tilde{T} \right> = 0;$       | $\langle TT^*  angle = 	ilde{C}$      |

The deformed covariance matrix is

$$\tilde{C} = C^{(0)} + \epsilon C^{(1)} + \frac{\epsilon^2}{2}C^{(2)} + \dots$$

- The observable field of the CMB is the (lensed) temperature field.
- The deformed field gives rise to S/N<sub>Realistic</sub>.
- A naïve and wrong approach would be to follow the ideal case.
- Deformed field  $T \rightarrow \tilde{T}$  belongs to a different type of deformation.

| Case      | Before deformation         |                                       | After de                              | formation                             |
|-----------|----------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| Ideal     | $\langle \psi  angle = 0;$ | $\langle \psi \psi^*  angle = C^\psi$ | $\langle \psi \rangle = \delta \psi;$ | $\langle \psi \psi^*  angle = C^\psi$ |
| Realistic | $\langle T \rangle = 0;$   | $\langle TT^* \rangle = C^{(0)}$      | $\left< \tilde{T} \right> = 0;$       | $\langle TT^*  angle = 	ilde{C}$      |

The deformed covariance matrix is

$$\tilde{C} = C^{(0)} + \epsilon C^{(1)} + \frac{\epsilon^2}{2}C^{(2)} + \dots$$

The S/N is then

$$\left(\frac{\mathsf{S}}{\mathsf{N}}\right)^{2} = \frac{\epsilon^{2}}{2} \sum \frac{\left|C_{ij}^{(1)}\right|^{2}}{C_{ii}^{(0)}C_{jj}^{(0)}} = \int \frac{\mathrm{d}\mathbf{l}}{(2\pi)^{2}} \frac{\mathrm{d}\mathbf{l}'}{(2\pi)^{2}} \frac{|C^{(1)}(\mathbf{l},\mathbf{l}')|^{2}}{C(l)C(l')}.$$

September 29, 2011

7/12

ben.rathaus@gmail.com (Tel-Aviv University) How sensitive is the CMB to a single lens?

• At most: realistic  $\longrightarrow$  ideal.

2

イロト イヨト イヨト イヨト

- At most: realistic  $\longrightarrow$  ideal.
- Ouch!!!
- Gaussian background??

#### Ideal and Realistic S/N



8/12

- At most: realistic  $\longrightarrow$  ideal.
- Ouch!!!
- Gaussian background??
- Our approach: Feynman rules.

Feynman rules

- T = propagating field
- Each leg:
  - 2D momentum
  - propagator C(l)
- Integrate loop mom.
- Single lens vertex

< ロ > < 同 > < 回 > < 回 >



- At most: realistic  $\longrightarrow$  ideal.
- Ouch!!!
- Gaussian background??
- Our approach: Feynman rules.
- Then the S/N

$$\left(\frac{\mathsf{S}}{\mathsf{N}}\right)^2 = \int \frac{\mathrm{d}\mathbf{l}}{(2\pi)^2} \frac{\mathrm{d}\mathbf{l}'}{(2\pi)^2} \frac{|C^{(1)}(\mathbf{l},\mathbf{l}')|^2}{C(l)C(l')}$$

#### Feynman rules

- T = propagating field
- Each leg:
  - 2D momentum
  - propagator C(l)
- Integrate loop mom.
- Single lens vertex

< ロ > < 同 > < 回 > < 回 >



- At most: realistic  $\longrightarrow$  ideal.
- Ouch!!!
- Gaussian background??
- Our approach: Feynman rules.
- Then the S/N

$$\left(\frac{\mathsf{S}}{\mathsf{N}}\right)^2 = \int \frac{\mathrm{d}\mathbf{l}}{(2\pi)^2} \frac{\mathrm{d}\mathbf{l}'}{(2\pi)^2} \frac{|C^{(1)}(\mathbf{l},\mathbf{l}')|^2}{C(l)C(l')}$$



#### Feynman rules

- T = propagating field
- Each leg:

- 2D momentum
- propagator C(l)
- Integrate loop mom.
- Single lens vertex



 $= \tilde{\gamma}(\mathbf{l}_1,\mathbf{l}_2)/2$ 

A B F A B F

#### The HEP-way

- Our propagating field is  $\Lambda$ CDM temperature field.
- Gaussianity means



### The HEP-way

- Our propagating field is  $\Lambda$ CDM temperature field.
- Gaussianity means



• Non-Gaussianity, on the other hand may mean



### The HEP-way

- Our propagating field is  $\Lambda$ CDM temperature field.
- Gaussianity means



• Non-Gaussianity, on the other hand may mean



and this is indeed the case in  $\Lambda$ CDM WL.

#### How does this come about?

- First, write a 4-point function in terms of the primordial temperature field.
- Second, keep only second (lowest) order in the deflection potential

$$\begin{array}{ll} \left\langle \tilde{T}\tilde{T}\tilde{T}\tilde{T}\right\rangle & \to & \left\langle \left(T+\boldsymbol{\nabla}\psi\cdot\boldsymbol{\nabla}T\right)\left(T+\boldsymbol{\nabla}\psi\cdot\boldsymbol{\nabla}T\right)T\;T\right\rangle \\ & \to & \left\langle \left(\boldsymbol{\nabla}\psi\cdot\boldsymbol{\nabla}T\right)\left(\boldsymbol{\nabla}\psi\cdot\boldsymbol{\nabla}T\right)\;T\;T\right\rangle \end{array}$$

< 回 > < 三 > < 三 >

#### How does this come about?

- First, write a 4-point function in terms of the primordial temperature field.
- Second, keep only second (lowest) order in the deflection potential

$$\begin{split} \left\langle \tilde{T}\tilde{T}\tilde{T}\tilde{T}\right\rangle & \to & \left\langle \left(T+\boldsymbol{\nabla}\psi\cdot\boldsymbol{\nabla}T\right)\left(T+\boldsymbol{\nabla}\psi\cdot\boldsymbol{\nabla}T\right)T\;T\right\rangle \\ & \to & \left\langle \left(\boldsymbol{\nabla}\psi\cdot\boldsymbol{\nabla}T\right)\left(\boldsymbol{\nabla}\psi\cdot\boldsymbol{\nabla}T\right)\;T\;T\right\rangle \end{split}$$

• Finally, consider, for example, the following contraction

$$\langle (\nabla \psi \cdot \nabla T) (\nabla \psi \cdot \nabla T) T T \rangle$$

A (10) A (10) A (10)

10/12

• 2-loop corrections to the S/N.



A (10) > A (10) > A (10)

11/12

- 2-loop corrections to the S/N.
- Moreover, 4-point vertex has substructure.



- 2-loop corrections to the S/N.
- Moreover, 4-point vertex has substructure.
- These corrections are *negative* therefore reduce the S/N.



∃ ► < ∃</p>

- 2-loop corrections to the S/N.
- Moreover, 4-point vertex has substructure.
- These corrections are *negative* therefore reduce the S/N.
- S/N turn-over is where 3-loop come into play (the latest).



- 2-loop corrections to the S/N.
- Moreover, 4-point vertex has substructure.
- These corrections are *negative* therefore reduce the S/N.
- S/N turn-over is where 3-loop come into play (the latest).
- We find the relation

$$\left(\frac{\mathsf{S}}{\mathsf{N}}\right)_{\mathsf{Accessible}} \sim \frac{1}{\sqrt{10}} \left(\frac{\mathsf{S}}{\mathsf{N}}\right)_{\mathsf{Ideal}}$$



- 2-loop corrections to the S/N.
- Moreover, 4-point vertex has substructure.
- These corrections are *negative* therefore reduce the S/N.
- S/N turn-over is where 3-loop come into play (the latest).
- We find the relation

$$\left(\frac{\textbf{S}}{\textbf{N}}\right)_{\textbf{Accessible}} \sim \frac{1}{\sqrt{10}} \left(\frac{\textbf{S}}{\textbf{N}}\right)_{\textbf{Ideal}}$$



• WMAP Vs. Planck

- 2-loop corrections to the S/N.
- Moreover, 4-point vertex has substructure.
- These corrections are *negative* therefore reduce the S/N.
- S/N turn-over is where 3-loop come into play (the latest).
- We find the relation

$$\left(\frac{\textbf{S}}{\textbf{N}}\right)_{\textbf{Accessible}} \sim \frac{1}{\sqrt{10}} \left(\frac{\textbf{S}}{\textbf{N}}\right)_{\textbf{Ideal}}$$

#### Example

Cosmic void

- WMAP Cold-spot
- $\bullet$  Argued: S/N  $\sim 40$

• But:

- S/N<sub>Ideal</sub>  $\sim 4$
- S/N<sub>Acc.</sub>  $\sim 1$

WMAP Vs. Planck

# Thank You!

ben.rathaus@gmail.com (Tel-Aviv University) How sensitive is the CMB to a single lens? September 2

크

イロト イヨト イヨト イヨト