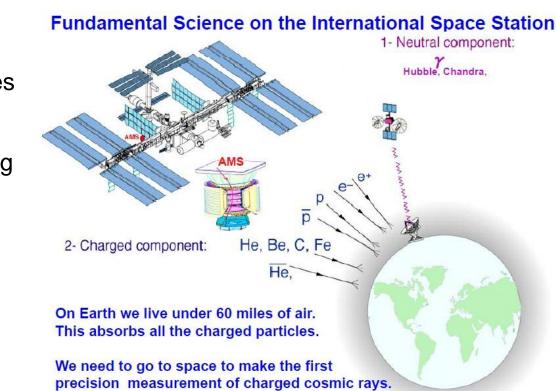
Performance of AMS-02 on the International Space Station

DESY Theory Workshop, 29.09.2011Hamburg Melanie Heil

Supported by the Carl-Zeiss Foundation

Overview



- The Alpha Magnetic Spectrometer
- The Physics
- The Detector
 - Particle identification
 - positron/proton separation with the Transition Radiation Detector (TRD)
 - Beam Test results
- The Journey
- Events / Data acquisition
- Calibration
 - Calibration of the TRD
- Summary

Alpha Magnetic Spectrometer

"THE MOST EXCITING OBJECTIVE OF AMS IS TO PROBE THE UNKNOWN; TO SEARCH FOR PHENOMENA WHICH EXIST IN NATURE THAT WE HAVE NOT YET IMAGINED NOR HAD THE TOOLS TO DISCOVER"

(S.C.C. Ting)

- ~600 Physicists from 60 institutes of 16 countries
- Spokesperson: Samuel C.C. Ting
- German contribution:

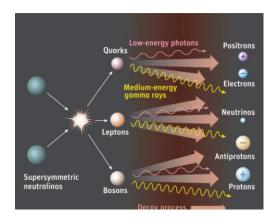
<u>TRD</u>: RWTH Aachen Karlsruhe Institute of Technology

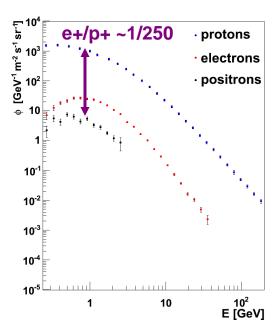
The Science

<u>Cosmic Rays</u>:

AMS will measure the flux of all the different compounds in the cosmic rays with un-preceded precision

• Dark Matter Searches:


annihilation of two DM candidate particles (e.g. SUSY- neutralinos) in standard model particles → Search for DM Contribution (Signal) in Cosmic Ray Spectra (Background)


 \rightarrow only Antimatter Spectra \rightarrow need of good Positron/Proton and Electron/Antiproton separation

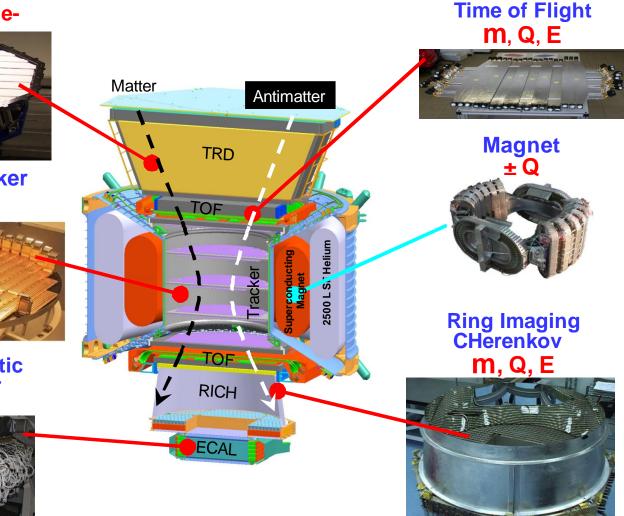
•Heavy Antimatter:

AMS will lower the limit of the Antihelium/Helium flux down to 10⁻⁹

• New Physics...

The Detector mass (m), charge (Q) and energy (E = P)

TRD Identify e+, e-



Silicon Tracker **m**, Q, E

Electromagnetic CALorimeter E of e+, e-

T Particle Identification

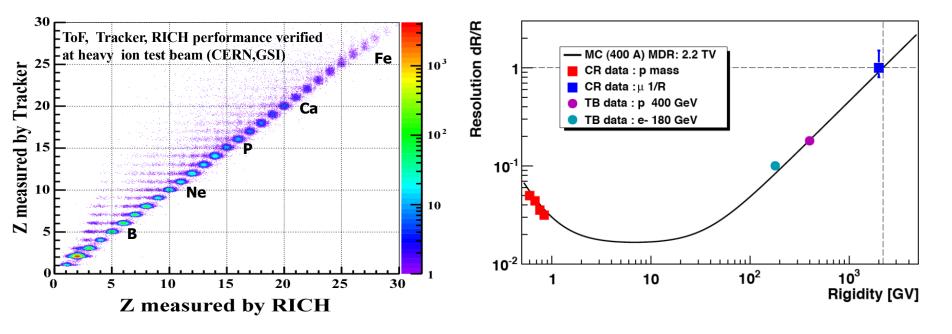
Reconstructed particle <u>attributes</u>:

Charge: TRD, Tracker, RICH, ToF Sign of Charge: Tracker Energy: Ecal Momentum: Tracker Beta: ToF, RICH Gamma: TRD

→ Positron/Proton Separation: Ecal + TRD

0.3 TeV	e-	e+	Ρ	He	γ	
TRD	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	744			£	
TOF	T	T	T	ا ر	Υ	
Tracker					\land	
RICH	0	0	0	Ô	00	
Calorimeter			******			

Particle Identification

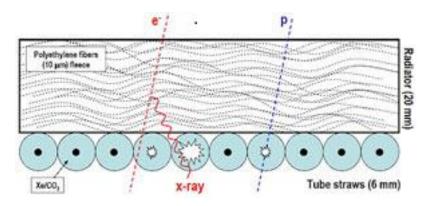

charge measurement:

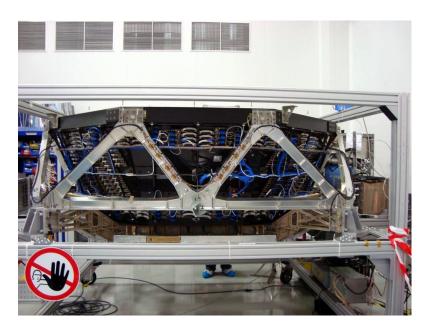
Tracker, ToF, RICH

(verified in Heavy Ion BeamTest 2007 @GSI)

rigidity measurement by Tracker:

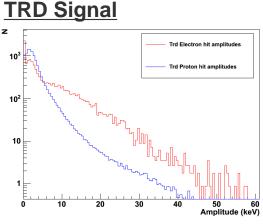
Test Beam and cosmic ray on ground data




Transition Radiation Detector

Detector design:

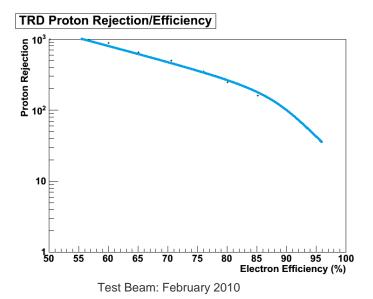
- 5248 proportional chambers
- Filled with mixture of Xe/CO₂ (~80/20)
- Operated at ~1500 V
- 5 kg CO₂, 49 kg Xe for refills on board (will last ~17 years)
 - 10 separable gas circuits (á 4(5) Gas Units)

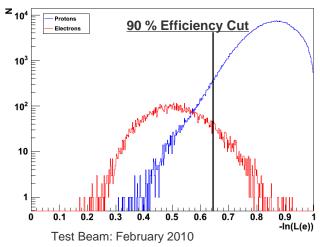


- 4 bottom and 4 top layers rotated 90° in respect to 12 middle layers
 - -> 3D track reconstruction

e+/p+ - separation with the TRD

- TRD separates particles based on their γ-factor
 - high γ-particles produce transition radiation which is detected in the proportional chambers
 - detected signal:
 - protons: ionization only
 - positions: ionization + transition radiation (electrons and positrons give the same signal -> electron data used for further calculations)
 - separation algorithm:
 - Create pdf of particle signal
 - Calculate likelihood of particle ID


Test Beam: February 2010


Proton rejection

- Test Beam results:
 - 400 GeV protons
 - 180 GeV electrons
 - For 90% electron efficiency:
 - TRD proton rejection ~100

TRD Likelihood

- combined rejection with ECal for 400 GeV protons:
 - Ecal and E/p : ~ 10⁴ 10⁵
 - TRD, ECal and E/p:

 $e+/p+ - rejection: > 10^{6}$

The Journey

KSC - Cape Canaveral (USA)

ESTEC - Nordwijk (NL) - Large Space Simulator

Oct. 2009: first assembly @ CERN Feb. 2010: BT @ CERN

Feb. 2010: EMI @ ESTEC Apr. 2010: TVT @ ESTEC

Jul. 2010: reassembly @ CERN Aug. 2010: BT @ CERN

Aug. 2010: transport to KSC

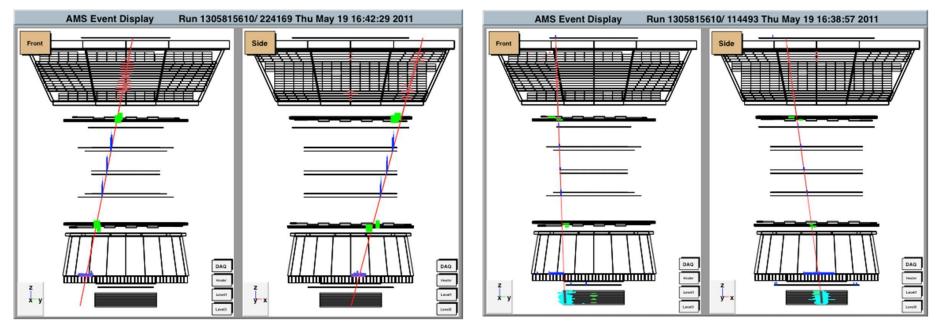
Apr. 2011: AMS to shuttle 16th May 2011: AMS to space

19th May 2011: AMS installed on ISS

JSC - Houston (USA) Mission Control Center

CERN - Geneva (CH) Assembly and Beam Test

The Journey II

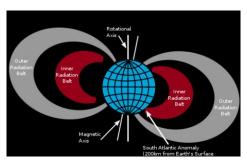

•Average trigger rate: ~ 1400 Hz (PAMELA: ~ 23 Hz)

•Total collected events so far: ~ 6 billion (collected in one month as many events

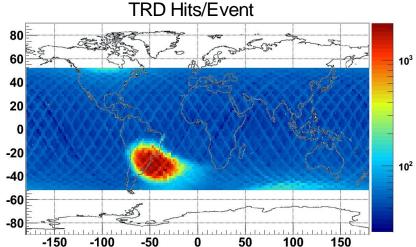
as PAMELA in it's lifetime of 5 years)

42 GeV Carbon nucleus

20 GeV electron



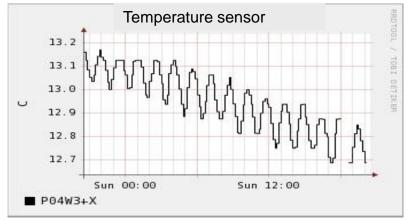
1600 80 1400 60 1200 40 20 1000 0 800 -20 600 -40 400 -60 200 -80 -100 150 -150 -50 50 100


Trigger Rate (Hz)

Karlsruhe Institute of Technology

at the (magnetic) polar region
 low energy particles are not
 deflected by the earths magnetic
 field → higher particle flux

- the size and location of the TRD make it very sensitive to the particle flux → very many hits in the SAA (South Atlantic Anomaly)



AMS-02 Calibration

- AMS-02 needs to be calibrated again in space after shuttle launch according to:
 - Temperature variations (all detectors)

•Temperatur variation due to orbit (sun/shadow)

•Overall temeratur change due to ISS parameters (beta angle, radiator setup, orientation,...)

No gravitation (main issue: new Tracker alignment)
Vacuum (main issue: TRD gas diffusion)

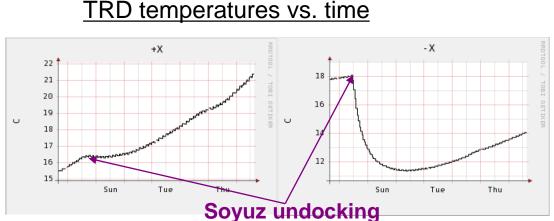
TRD Calibration

Impact parameters on the gas gain:

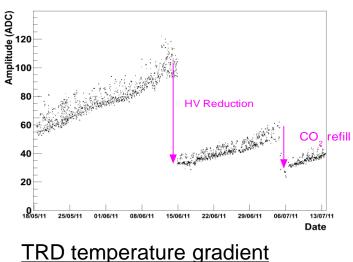
-Gas composition

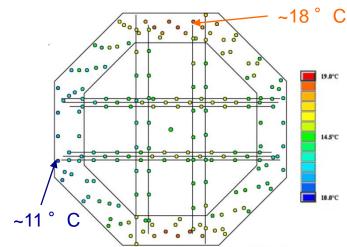
less $CO_2 \rightarrow$ higher signal

-Gas density


higher density \rightarrow lower signal

High Voltage


higher voltage \rightarrow higher signal

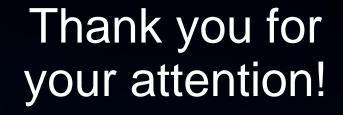

-Temperature

 \rightarrow leading to different gas density

TRD signal vs. time

TRD Calibration II

- **!Gas composition changes due to diffusion of CO2**
- !Gas density changes due to leakage \rightarrow monthly refills
- **Weekly HV adjustment**
- **!Temperature changes due to ISS, heater actions and periodically with orbit**
- \rightarrow Time dependent calibration needed
 - + different temperatures over the detector
- \rightarrow Complicated calibration algorithm needed!
 - Find best time interval and geometrical unit which provide enough statistics for "on the go" calibration!



Summary

- Beam Test data shows proton rejection power > 10⁶
 →sufficient for clean positron spectrum

 First look at ISS data reproduces BT results!
- AMS-02 was launched on board Endeavour May 16th 2011
- AMS-02 started taking data on May 19th 2011 All systems are working properly!
- Calibration of subdetectors is ongoing
- First results expected in 2012...

Any questions?