Chirality inducing G_4 -flux in F-theory compactifications

Sven Krause

University Heidelberg

s.krause@thphys.uni-heidelberg.de

September 29, 2011

Introduction

In this talk I will present results from our recent Paper

[Krause, Mayrhofer, Weigand; 1109.3454 [hep-th]]

Main results:

- We construct a globally defined non-Cartan G_4 -flux in F-Theory.
- We show that it induces chirality and compute the chiral index.
- We exemplify this in a 3-generation F-theory GUT compactification.

Indpendent, but related recent work:

- [Braun, Collinucci, Valandro; 1107.5337 [hep-th]]: similar fluxes in SU(2) F-theory models, but with different resolution techniques
- [Marsano, Schäfer-Nameki 1108.1794 [hep-th]]: global extension of spectral cover fluxes in SU(5) models without U(1) restriction (less global sensitivity)

Structure of this talk:

- overview of F-Theory
- introduction of a non-Cartan G_4 -flux in $SU(5) \times U(1)_X$ models
- presentation of chirality relation

F-Theory can be viewed as a non-perturbative extension of Type IIB-theory, in which the axio-dilaton is geometrized as a torus.

In particular, F-Theory models live on elliptically fibred Calabi-Yau four-folds:

$$T \hookrightarrow Y_4$$
 \downarrow
 B_3

F-Theory can also be viewed as dual to M-Theory via reduction of one of the torus circles and performance of T-duality along the other.

In particular, the bulk and brane fluxes of F-Theory are encoded in the G_4 -flux of M-Theory.

F-Theory (2)

To construct a brane set-up in F-Theory, in which strings are in the fundamental representation of SU(5), **24**, the complex structure moduli are restricted so as to induce an A_4 -singularity [Bershadsky et. al.; 9605200 [hep-th]]:

(almost) generic fibre (in $\mathbb{P}_{231}[x, y, z]$):

$$P_{T} = \{y^{2} + a_{1} x y z + a_{3} y z^{3} = x^{3} + a_{2} x^{2} z^{2} + a_{4} x z^{4} + a_{6} z^{6}\}$$

where the a_i depend on the base.

Restriction:

$$a_1 = a_1, \quad a_2 = a_{2,1} w \quad a_3 = a_{3,2} w^2 \quad a_4 = a_{4,3} w^3 \quad a_6 = a_{6,5} w^5$$

 \rightarrow SU(5)-singularity in the fibre over the GUT surface w = 0

For the standard model extension $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$ one further would like states in the **10**- and the **5**-representation.

 \rightarrow These occur on Enhancement Curves.

Correspondingly, the Yukawa coupling are encoded in Enhancement Points, where these curves meet.

For generic SU(5)-models only a single **5**-curve occurs.

However, one would like these to split into $\mathbf{5}_m$ and $\mathbf{5}_H$.

To enforce the splitting, the complex structure moduli are further restricted to $a_6 = 0$.

As was shown in [Grimm, Weigand; 1006.0226 [hep-th]], this induces an additional SU(2)-singularity along the curve $a_3 = a_4 = 0$.

Type IIB picture: States on this curve live in the $U(1) \times U(1)$; the diagonal U(1) is projected out by involution, leaving one additional U(1). Reliable calculations of topological or geometric properties require the singularities to be resolved.

SU(5)-singularity: 4 new divisors e_i ; 4 new divisor classes E_i . SU(2)-singularity: 1 new divisor s; 1 new divisor class S. \leftrightarrow extra U(1) symmetry from expansion $C_3 = A \land (S + ...)$

	x	у	Ζ	5	e_1	e_2	e_3	e_4	e_0
W	•	•	•	•	•	•	•	•	1
c_1	2	3	•	•	•	•	•	•	•
Ζ	2	3	1	•	•	•	•	•	•
S	-1	$^{-1}$	•	1	•	•	•	•	•
E_1	-1	$^{-1}$		•	1	•	•		-1
E_2	-2	$^{-2}$	•	•	•	1	•	•	-1
E_3	-2	-3	•	•	•	•	1	•	-1
E_4	-1	-2	•	•	•	•	•	1	-1

Flux (1)

Chiral matter spectrum requires G₄-flux.

Obvious candidate for flux in presence of U(1):

$$C_3 = A \wedge (S + \ldots) \quad \rightarrow \quad G_4 = F \wedge (S + \ldots)$$

General conditions from the dual M-theory picture ('one leg in the fibre, three legs in the base') [Denef; 0803.1194 [hep-th]]

$$\int_{\tilde{Y}_4} G_4 \wedge D_a \wedge D_b = 0$$
$$\int_{\tilde{Y}_4} G_4 \wedge Z \wedge D_a = 0$$

Conditions met by e.g.

$$\begin{split} G_4 &= [E_i] \wedge F_i \qquad (\text{Cartan Fluxes}) \\ G_4 &= [(Z + \bar{K} - S)] \wedge F_X \end{split}$$

To construct a non-Cartan flux, one further requires

$$\int_{\tilde{Y}_4} G_4 \wedge E_i \wedge D_b = 0$$

Conditions met by $(G_4 = w_X \wedge F_X)$:

$$w_X = 5 \left(Z + \bar{K} - S \right) - a_i E_i \tag{1}$$

with $a_i = (2, 4, 6, 3)$.

Chirality (1)

In Type IIB, the chirality of states on a curve of intersecting branes is given by

where C_{R_q} denotes the curve and R_q the group representation.

One would like to relate this to the integral of a four-form flux over the matter surfaces in \tilde{Y}_4 associated to C_{R_q} .

These surfaces, C_{R_q} , consist of a linear combination of the blow-up \mathbb{P}^1 s fibred over the enhancement curve \mathcal{C}_{R_q} .

The linear combination is such that in the dual M-theory picture, an M2-brane wrapping this combination is in one of the states of the representation R_q .

With the non-Cartan flux constructed above one finds

$$\int_{C_{R_q}} G_4 = \int_{C_{R_q}} w_X \wedge F_X = q \int_{\mathcal{C}_{R_q}} F_X$$

with q the $U(1)_X$ -charge.

(2)

Summary and Outlook

We have

- found U(1)-induced, non-Cartan flux in $SU(5) \times U(1)_X$ models
- demonstrated that this induces chirality

Further results not presented here, but included in the paper:

- Computed induced D3-brane tadpole and D-term supersymmetry condition
- Implemented in global F-theory $SU(5) \times U(1)_X$ compactification with 3 chiral generations
- For recombination of the **5**-curves/ general SU(5)-models, can define G_4 via horizontal four-forms, see also [Braun, Collinucci, Valandro; 1107.5337 [hep-th]]. The chirality formulae change only slightly.

In the future we hope to better understand

- the quantization conditions imposed on the flux derived above,
- the direct link between the above flux and Type IIB-fluxes.

Sven Krause (University Heidelberg)

Chirality inducing G₄-flux

Thank you for your attention!

Towards the Matter Surfaces: \mathbb{P}^1 -structure

Generarically, a \mathbb{P}^1 is given in the ambient five-fold by

 $P_T|_{e_i=0} \cap e_i \cap y_a \cap y_b$

 $i \in \{0, 1, 2, 3, 4\} \quad \Rightarrow \quad 5 \mathbb{P}^1 s \text{ of } SU(5)$

Over enhancement curve (e.g. $y_a = a_1$), $P_T|_{e_i=0}$ may factorise. Take, e.g. $P_T|_{e_i=0} = AB$. $\Rightarrow 2 \mathbb{P}^1$ s from e_i :

 $A \cap e_i \cap a_1 \cap y_b$ $B \cap e_i \cap a_1 \cap y_b$

In this way one finds the additional \mathbb{P}^1 s for necessary for SO(10)-, SU(6)-enhancements, etc..

Note: One does not obtain the \tilde{E}_6 -structure in this way, see [Esole, Yau].

Multiplicities and Intersection structure of the \mathbb{P}^1 s allow one to

- $\label{eq:action} \begin{array}{l} \rightarrow & \mbox{calculate Cartan charge of each } \mathbb{P}^1 \\ & \mbox{e.g. } (1,0,0,-1) \end{array}$
- $\rightarrow \quad \text{determine the group theoretic representation of each } \mathbb{P}^1 \\ \text{(more concretely: of an M2-brane wrapping a certain } \mathbb{P}^1\text{)} \\ \text{e.g. } \mu_{10} \alpha_2 \alpha_3 \alpha_4$
- $\begin{array}{l} \rightarrow \quad \mbox{express each group theoretic state as a linear combination of \mathbb{P}^1s} \\ \mbox{e.g. } \mu_{10} \simeq \mathbb{P}^1_{0A} + \mathbb{P}^1_{14} + \mathbb{P}^1_{4D} \end{array}$
- → define the matter surfaces accordingly e.g. C_{10}^1 = 'linear combination of \mathbb{P}^1 s corresponding to μ_{10} fibred over $C_{10} := \{a_1 = 0\}$ '