Three-loop anomalous dimensions for squarks in SUSY-QCD

based on Physics Letters B 703 (2011) 51-59 (arXiv:1106.1060)

<u>Thomas Hermann,</u> Luminita Mihaila and Matthias Steinhauser

Institut für Theoretische Teilchenphysik

DESY THEORY WORKSHOP 2011

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline				
	000000	00000		
Introduction Top-squark renormalization constants		Anomalous dimensions	Conclusion	

1 Introduction

2 Top-squark renormalization constants

Top squark sector Renormalization constants for squarks Calculation

3 Anomalous dimensions

Anomalous dimensions in the $\overline{\text{DR}}$ scheme Anomalous dimensions in the $\overline{\text{DR}}'$ scheme Anomalous dimensions for soft SUSY breaking parameters

4 Conclusion

Introductio	n		
•	000000	00000	0
Introduction		Anomalous dimensions	Conclusion

- Supersymmetric extension of QCD \rightarrow gluinos and squarks
- Regularisation scheme
 - Dimensional reduction,
 - dimensional regularisation breaks SUSY explicitly
 - New unphysical particles: ϵ scalars; mass term in ${\cal L}$
 - Minimal renormalization scheme: DR scheme
- Renormalization constants for SUSY-QCD
 - SUSY-QCD β function and anomalous dimensions for quarks and gluinos to three loops

[Harlander, Mihaila, Steinhauser 2009]

- Renormalization constants for squarks to two loops [Kant, Harlander, Mihaila, Steinhauser 2010]
- New: For squarks to three-loop order
- Anomalous dimensions for masses
 - running from the GUT scale to the EW scale
 - e.g. constrained MSSM

[Barger, ..., Yamada 1994-2008]

Introduction	Top-squark renormalization constants	Anomalous dimensions	Conclusion
	00000	00000	
Top squa	rk sector		

 \tilde{t}_L and \tilde{t}_R are interaction eigenstates but not mass eigenstates:

$$\begin{pmatrix} m_t^2 + M_z^2 \left(\frac{1}{2} - \frac{2}{3}\sin^2\vartheta_W\right)\cos 2\beta + M_{\tilde{Q}}^2 & m_t \left(A_t - \mu_{\text{SUSY}}\cot\beta\right) \\ m_t \left(A_t - \mu_{\text{SUSY}}\cot\beta\right) & m_t^2 + \frac{2}{3}M_z^2\sin^2\vartheta_W\cos 2\beta + M_{\tilde{U}}^2 \end{pmatrix}$$

$$\equiv \begin{pmatrix} m_{\tilde{t}_L}^2 & m_t X_t \\ m_t X_t & m_{\tilde{t}_R}^2 \end{pmatrix} = \mathcal{M}_{\tilde{t}}^2$$

Soft SUSY breaking masses $M_{\tilde{Q}},\,M_{\tilde{U}}$ and soft SUSY breaking tri-linear coupling A_t

• Mass eigenstates $\tilde{t}_{1,2}$ through unitary transformation

$$\begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix} = R_{\tilde{t}}^{\dagger} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix} \qquad R_{\tilde{t}} = \begin{pmatrix} \cos\theta_t & -\sin\theta_t \\ \sin\theta_t & \cos\theta_t \end{pmatrix}$$

• Mixing angle θ_t

	Top-squark renormalization constants	Anomalous dimensions	Conclusion
	00000	00000	
Renormal	ization constants for sq	uarks I	

- Loop induced transition from \tilde{t}_1 to $\tilde{t}_2 \rightarrow$ counterterm is needed
- Matrix ansatz for renormalization constants

$$\begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix}^{(0)} = \mathcal{Z}_{\tilde{t}}^{1/2} \begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix}$$

$$\mathcal{Z}_{\tilde{t}}^{1/2} = \tilde{Z}_2^{1/2} \left(\begin{array}{c} \cos \delta \theta_t & \sin \delta \theta_t \\ -\sin \delta \theta_t & \cos \delta \theta_t \end{array} \right)$$

- Renormalization of the mixing angle $\theta_t^{(0)} \rightarrow \theta_t + \delta \theta_t$
- Renormalization of the masses

$$\begin{pmatrix} m_{\tilde{t}_1}^2 & 0\\ 0 & m_{\tilde{t}_2}^2 \end{pmatrix}^{(0)} \to \begin{pmatrix} m_{\tilde{t}_1}^2 Z_{m_{\tilde{t}_1}} & 0\\ 0 & m_{\tilde{t}_2}^2 Z_{m_{\tilde{t}_2}} \end{pmatrix} \equiv \mathcal{M}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

		1 11		
0	00000	00000	0	
	Top-squark renormalization constants	Anomalous dimensions	Conclusion	

Renormalization constants for squarks II

• Loop corrections to self energies

$$\hat{\Sigma} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \qquad \Sigma_{ij} = \tilde{t}_i - (1PI) - \tilde{t}_j$$

• Inverse squark propagator in matrix form

$$i \mathcal{S}^{-1}(p^2) = p^2 \left(\mathcal{Z}_{\tilde{t}}^{1/2} \right)^{\dagger} \mathcal{Z}_{\tilde{t}}^{1/2} - \left(\mathcal{Z}_{\tilde{t}}^{1/2} \right)^{\dagger} \left(\mathcal{M} - \hat{\Sigma}(p^2) \right) \mathcal{Z}_{\tilde{t}}^{1/2}$$

• Renormalization condition in DR scheme:

$$i S_{ij}^{-1}(p^2) \Big|_{pp} = 0$$

 \rightarrow e.g. equations to order α_s

$$\begin{split} \left\{ \Sigma_{ii}^{(1)} - m_{\tilde{t}_i}^2 \left(\delta \tilde{Z}_2^{(1)} + \delta Z_m^{(1)} \right) + p^2 \delta \tilde{Z}_2^{(1)} \right\} \bigg|_{pp} &= 0, \quad i = 1, 2 \\ \left. \left\{ \Sigma_{12}^{(1)} - \delta \theta_t^{(1)} \left(m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2 \right) \right\} \bigg|_{pp} &= 0 \\ &= 0 \end{split}$$

	Top-squark renormalization constants	Anomalous dimensions	Conclusion
	000000	00000	
Calculation	1		

- Squark propagator has mass dimension two \rightarrow renormalization constants depend on the masses (in contrast to quarks and gluinos)
- Generic squark \tilde{q} with mass $m_{\tilde{q}}$
- ϵ scalars with non-vanishing mass m_ϵ , because RGE for the squark masses and m_ϵ are coupled
- Three loop integrals with many different mass scales
 - Asymptotic expansion with $Exp \rightarrow$ Reduction to one scale integrals [Harlander, Seidensticker, Steinhauser 1998 and Seidensticker 1999]
 - MINCER [Larin, Tkachov, Vermaseren 1991] and MATAD package [Steinhauser 2001]
- · Calculation with different mass hierarchies

•
$$q^2 \gg m_{\tilde{t}_2}^2 \gg m_{\tilde{q}}^2 \gg m_{\tilde{t}_1}^2 \gg m_{\tilde{g}}^2 \gg m_t^2 \gg m_\epsilon^2$$

- $\bullet \ q^2 \gg m_{\tilde{g}}^2 \ \gg m_{\tilde{q}}^2 \gg m_{\tilde{t}_2}^2 \gg m_{\tilde{t}_1}^2 \gg m_t^2 \ \gg m_\epsilon^2$
- $\bullet \ q^2 \gg m_{\tilde{g}}^2 \ \gg m_{\tilde{q}}^2 \gg m_{\tilde{t}_2}^2 \gg m_{\tilde{t}_2}^2 \gg m_{\tilde{t}_1}^2 \ \gg m_{\tilde{t}_1}^2$

 \rightarrow same results

	Top-squark renormalization constants		Conclusion
	000000	00000	
Calculatio	n II		

Sample diagrams contributing to Σ_{11} :

(日)、

- Σ_{11} to 3L pprox 7000 diagrams
- Σ_{12} to 3L \approx 5000 diagrams

Introduction	Top-squark renormalization constants	Anomalous dimensions	Conclusion
0	00000	00000	0

Calculation III

- Most terms in $\delta\theta_t$ and $Z_{m_{\tilde{t}_i}}$ are proportional to $m_{\tilde{t}_i}^2$, $m_{\tilde{g}}^2$, m_t^2 , \ldots
- But at 2L and 3L order

$$m_{\tilde{t}_1}^2 \delta Z_{m_{\tilde{t}_1}}^{(2)} \sim \frac{m_{\tilde{g}}^2 m_t^2}{\left(m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2\right)} = -\frac{m_{\tilde{g}}^2 m_t^2}{m_{\tilde{t}_2}^2} \sum_{n=0}^{\infty} \left(\frac{m_{\tilde{t}_1}^2}{m_{\tilde{t}_2}^2}\right)^n$$

$$m_{\tilde{t}_1}^2 \delta Z_{m_{\tilde{t}_1}}^{(3)} \sim \frac{m_{\tilde{g}}^3 m_t^3}{\left(m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2\right)^2} = \frac{m_{\tilde{g}}^3 m_t^3}{m_{\tilde{t}_2}^4} \sum_{n=0}^{\infty} \left(2 \frac{m_{\tilde{t}_1}^2}{m_{\tilde{t}_2}^2} - \frac{m_{\tilde{t}_1}^4}{m_{\tilde{t}_2}^4}\right)^n$$

- It was possible to identify the first terms of the geometrical series \rightarrow reconstruction of full mass-dependence
- Asymptotic expansion to $m_{\tilde{t}_{2}}^{-10}$

Renormalization:

- m_{ϵ} in the $\overline{\mathrm{DR}}$ and in the on-shell scheme
- all the other parameters $(\alpha_s, m_t, m_{\tilde{g}}, ...)$ in the $\overline{\text{DR}}$ scheme

		Anomalous dimensions	Conclusion
0	000000	0000	0

Anomalous dimensions in the DR scheme

• Anomalous dimensions for squark masses

$$m_{\tilde{t}_i,0}^2 = m_{\tilde{t}_i}^2 Z_{m_{\tilde{t}_i}} \quad \Rightarrow \quad \mu^2 \frac{d}{d\mu^2} m_{\tilde{t}_i}^2 = -\frac{\mu^2}{Z_{m_{\tilde{t}_i}}} m_{\tilde{t}_i}^2 \frac{d}{d\mu^2} Z_{m_{\tilde{t}_i}} \equiv \gamma_{m_{\tilde{t}_i}} m_{\tilde{t}_i}^2$$

• Anomalous dimension for mixing angle (with $Z_{\theta_t} = 1 + \frac{\delta \theta_t}{\theta_t}$)

$$\theta_{t,0} = \theta_t \, Z_{\theta_t} \quad \Rightarrow \quad \mu^2 \frac{d}{d\mu^2} \, \theta_t = -\frac{\mu^2}{Z_{\theta_t}} \, \theta_t \, \frac{d}{d\mu^2} \, Z_{\theta_t} \equiv \gamma_{\theta_t} \, \theta_t$$

- μ dependence not only in α_s but also in the masses and mixing angle
- $\gamma_{m_{\tilde{t}_i}}$ and γ_{θ_t} are finite quantities \to important check for the renormalization constants

 $\gamma_{m_{\tilde{t}_i}}$ depend on unphysical ϵ scalar mass:

- $m_{\epsilon}^{\rm OS}$ can be set to zero
- If $m_{\epsilon}^{\overline{\text{DR}}}$ is set to zero at one scale it is different from zero at another scale $\rightarrow \overline{\text{DR}}'$ scheme

0	000000

Anomalous dimensions in the DR scheme

$$\gamma_{m_{\tilde{t}_{1}}} = -\frac{\alpha_{s}}{\pi} \sum_{n \ge 0} \left(\frac{\alpha_{s}}{\pi}\right)^{n} \gamma_{m_{\tilde{t}_{1}}}^{(n)}$$

$$m_{\tilde{t}_1}^2 \gamma_{m_{\tilde{t}_1}}^{(0)} = C_F \left[m_{\tilde{g}}^2 + \frac{1}{8} (1 - c_{4t}) \left(m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2 \right) + m_t^2 - m_{\tilde{g}} m_t s_{2t} \right]$$

$$\begin{split} m_{\tilde{t}_{1}}^{2} \gamma_{m_{\tilde{t}_{1}}}^{(2)} &= C_{F}^{3} \left\{ 3 \, m_{\tilde{g}}^{2} + \frac{1}{2} \, m_{t}^{2} - \frac{3}{2} \, m_{\tilde{g}} \, m_{t} \, s_{2t} + \frac{1}{16} \, (1 - c_{4t}) \, \left(m_{\tilde{t}_{1}}^{2} - m_{\tilde{t}_{2}}^{2} \right) \right\} \\ &+ C_{A}^{2} \, C_{F} \left\{ \frac{45}{32} \, m_{\epsilon}^{2} + \frac{15}{4} \, m_{\tilde{g}}^{2} + \frac{3}{8} \, m_{t}^{2} - \frac{9}{8} \, m_{\tilde{g}} \, m_{t} \, s_{2t} + \frac{3}{64} \, (1 - c_{4t}) \, \left(m_{\tilde{t}_{1}}^{2} - m_{\tilde{t}_{2}}^{2} \right) \right\} \\ &+ C_{F}^{2} \, C_{A} \left\{ - \frac{9}{2} \, m_{\epsilon}^{2} - \frac{21}{2} \, m_{\tilde{c}}^{2} - \frac{3}{2} \, m_{t}^{2} + \frac{9}{2} \, m_{\tilde{g}} \, m_{t} \, s_{2t} - \frac{3}{2} \, (1 - c_{4t}) \, \left(m_{\tilde{t}_{1}}^{2} - m_{\tilde{t}_{2}}^{2} \right) \right\} \end{split}$$

$$+ C_F T_f^2 \left\{ n_t^2 \left[\frac{3}{8} \frac{m_e^2}{m_e^2} - \frac{3}{2} \frac{m_{\tilde{g}}^2}{m_{\tilde{g}}^2} + \frac{3}{4} \frac{m_{\tilde{t}_1}^2}{m_{\tilde{t}_1}^2} - m_t^2 + \frac{3}{4} \frac{m_{\tilde{g}}}{m_{\tilde{g}}} \frac{m_t}{m_t} s_{2t} - \frac{1}{32} (13 - c_{4t}) \left(m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2 \right) \right] \right\}$$

$$+ n_{q}^{2} \left[\frac{3}{8} m_{\epsilon}^{2} - \frac{3}{2} m_{\tilde{g}}^{2} + \frac{3}{4} m_{\tilde{q}}^{2} - \frac{1}{4} m_{t}^{2} + \frac{3}{4} m_{\tilde{g}} m_{t} s_{2t} - \frac{1}{32} (1 - c_{4t}) \left(m_{\tilde{t}_{1}}^{2} - m_{\tilde{t}_{2}}^{2} \right) \right] \\ + n_{q} n_{t} \left[\frac{3}{4} m_{\epsilon}^{2} - 3 m_{\tilde{g}}^{2} + \frac{3}{4} m_{\tilde{q}}^{2} + \frac{3}{4} m_{\tilde{t}_{1}}^{2} - \frac{5}{4} m_{t}^{2} + \frac{3}{2} m_{\tilde{g}} m_{t} s_{2t} + \cdots \right] \right\} + \cdots$$

Anomalous dimensions in the $\overline{\mathsf{DR}}'$ scheme

 DR' scheme:
 [Jack, Jones, Martin, Vaughn, Yamada 1994]

same as $\overline{\mathsf{DR}}$ scheme with finite shift in squark masses

$$m_{\tilde{f}}^2 \to m_{\tilde{f}}^2 - \frac{\alpha_s}{\pi} \frac{1}{2} C_F m_{\epsilon}^2 + \left(\frac{\alpha_s}{\pi}\right)^2 C_F m_{\epsilon}^2 \left(\frac{1}{4} T_f (n_q + n_t) + \frac{1}{4} C_F - \frac{3}{8} C_A\right)$$
[Martin 2002]

Finite term is chosen such that the ϵ scalar mass decouples from the system of differential equations.

$$\Rightarrow \gamma_{m_{\tilde{t}_i}}^{\overline{\mathsf{DR}}'}$$
 are independent of m_{ϵ}

Introduction	Top-squark renormalization constants	Anomalous dimensions	
0	000000	00000	0

Anomalous dimensions for soft SUSY breaking parameters

Results in the literature for SUSY anomalous dimensions:

- 1L and 2L order [Barger et al 1994, ..., Martin et al 2008]
- 3L order [Ferreira, Jack, Jones, Kazakov, Kord, North, Velizhanin 1996-2005]
- Full 3L β -functions and anomalous dimensions for MSSM [Jack, Jones, Kord 2005]

Based on so-called NSVZ scheme [Novikov, Shifman, Vainshtein, Zakharov 1983] Relations between β -functions of gauge and Yukawa couplings and anomalous dimensions of soft breaking parameters

Here: Diagrammatic approach full agreement

Anomalous dimensions for soft SUSY breaking masses $M_{\tilde{Q}}$, $M_{\tilde{U}}$ and soft SUSY breaking tri-linear coupling A_t

$$\begin{pmatrix} m_{\tilde{t}_1}^2 & 0\\ 0 & m_{\tilde{t}_2}^2 \end{pmatrix} = R_{\tilde{t}}^{\dagger} \mathcal{M}_{\tilde{t}}^2 R_{\tilde{t}}$$
$$m_{\tilde{t}_1}, \gamma_{m_{\tilde{t}_2}}, \gamma_{\theta_t} \Leftrightarrow \gamma_{M_{\tilde{O}}}, \gamma_{M_{\tilde{U}}}, \gamma_{A_t}$$

Numerical example for $\overline{\mathsf{DR}}'$ scheme

Running from $\mu=\mu_G=10^{16}\,{\rm GeV}$ to $\mu=M_Z$

- $m_t(M_Z) = 170 \,\text{GeV}$ and $\alpha_s(M_z) = 0.118$
- $\overline{\rm DR}'$ parameters at the scale $\mu = \mu_G = 10^{16} \,{\rm GeV}$:

$$m_{\tilde{t}_1} = 400 \,\, {\rm GeV}\,, \quad m_{\tilde{t}_2} = m_{\tilde{g}} = m_{\tilde{q}} = 600 \,\, {\rm GeV}\,, \quad \theta_t = 0.1$$

• $\overline{\rm DR}'$ parameters of squark sector at the scale $\mu = M_Z$:

	1 loop	2 loops	3 loops	1 loop	2 loops	3 loops
$m_{\tilde{t}_1}$ (GeV)	1425	1416	1378	1456	1419	1378
$m_{\tilde{t}_2}$ (GeV)	1677	1670	1632	1704	1672	1632
θ_t	0.658	0.659	0.656	0.659	0.659	0.656
$m_{\tilde{q}}$ (GeV)	1580	1573	1535	1609	1575	1535

left table: for α_s , m_t and $m_{\tilde{g}}$ 3L running was used

• relatively large 3L corrections

right table: for all parameters 1L, 2L and 3L running was used

[Jack, Jones, Kord 2005]

Introduction	Top-squark renormalization constants	Anomalous dimensions	Conclusion
O		00000	•
Conclusion			

Renormalization constants for top-squarks to three-loop order

• Asymptotic expansion \rightarrow reconstruction of full mass dependence

Anomalous dimensions

- $\overline{\text{DR}}$ and $\overline{\text{DR}}'$ scheme
- diagrammatic approach
- full agreement with [Jack, Jones, Kord 2005]
- relatively large 3L corrections

All renormalization constants and anomalous dimensions in Mathematica format can be downloaded from

www-ttp.particle.uni-karlsruhe.de/Progdata/ttp11/ttp11-16/